OP-Journal 2018; 34(02): 118-126
DOI: 10.1055/a-0574-3131
Fachwissen
Georg Thieme Verlag KG Stuttgart · New York

Zervikale Rückenmarkverletzungen bei vorbestehender Spinalkanalstenose

Cervical Injuries to the Spinal Cord with Prior Stenosis of the Spinal Canal
Chris Schulz
,
René Mathieu
,
Uwe Max Mauer
Further Information

Publication History

Publication Date:
10 August 2018 (online)

Zusammenfassung

Das Risikopotenzial eines Patienten mit asymptomatischer zSKS eine zRMV zu erleiden, ist nicht relevant erhöht. Gemessen an der perioperativen Morbidität und Mortalität zervikaler Dekompressions- und Fusionseingriffe sind prophylaktische Operationen für diese Subgruppe nicht zu empfehlen. Bei symptomatischen, insbesondere myelopathischen Patienten mit zSKS steigt einerseits die Sturzgefahr (als Folge der ataktischen Gangstörung), und die Prognose eines zRMV mit zSKS ist erwiesenermaßen schlechter als ohne additive zSKS. Somit sollten symptomatische Patienten mit zSKS insbesondere bei Versagen konservativer Maßnahmen und Progredienz der neurologischen Störungen oder auffälligen elektrophysiologischen Befunden eher einer elektiven Dekompression zugeführt werden. Bei milder zRMV (ASIA >D) kann zunächst ein konservativer Therapieversuch unternommen werden. Bei symptomatischer zRMV (ASIA C oder schlechter) und zusätzlicher zSKS geht der Trend eher hin zu dekomprimierenden Operationen, wenn in der Akut- oder frühen Frühphase nicht eindeutig eine rasche Besserung unter konservativer Therapie ersichtlich ist. Die aktuelle systematisch aufgearbeitete Studienlage zur zRMV favorisiert eine frühe OP (innerhalb von 24 h, bei zRMV mit inkompletter Neurologie sogar < 8 – 12 h). Ob dies auch für die Subgruppe von zRMV mit zSKS gilt, kann mit hochwertigen Studien und eindeutiger Evidenz noch nicht belegt werden. Für eine zervikale Dekompressionsoperation mit Duraerweiterungsplastik finden sich derzeit noch nicht genügend positive Hinweise. Zervikale Myelonverletzungen mit zSKS ziehen sehr häufig Begutachtungen nach sich. In Erwartung dessen sollten Anstrengungen unternommen werden, die initialen Befunde und den Verlauf sowie die durchgeführten Therapien möglichst lückenlos zu dokumentieren.

Abstract

Patients with asymptomatic cervical spinal stenosis do not exhibit a clinically relevant increase in the risk of cervical spinal cord injury. Prophylactic operations are not recommended for this subgroup, on account of the perioperative morbidity and mortality of cervical decompression and fusion surgery. In symptomatic patients, especially myelopathic patients with cervical spinal stenosis, the risk of falling increases (as a result of an ataxic gait) and the prognosis of a cervical spinal cord injury with cervical spinal stenosis is proven to be worse than without cervical spinal stenosis. For this reason, patients with symptomatic cervical spinal stenosis should generally be treated with elective decompression if conservative measures fail and neurological disorders worsen or electrophysiological findings are abnormal. Patients with a minor cervical spinal cord injury (ASIA Impairment Scale grade D or above) can initially receive conservative care. For symptomatic patients with a cervical spinal cord injury (ASIA Impairment Scale grade C or below) and additional cervical spinal stenosis, there is a general trend towards decompression operations if conservative treatment does not clearly result in rapid improvement during the acute or early phase. A systematic review of the current literature on cervical spinal cord injury suggests that early surgical intervention is favourable (within 24 hours; within 8 to 12 hours for cervical spinal cord injury with incomplete neurology). Whether this applies to the subgroup of cervical spinal cord injury with cervical spinal stenosis has not been proven in high quality studies and with unambiguous evidence. There are at present insufficient positive indications for cervical decompression surgery with dura enlargement. The treatment of cervical spinal cord injuries with cervical spinal stenosis often involves expert opinions. For this reason, efforts should be made to thoroughly document initial findings, the clinical course, and the treatment provided.

 
  • Literatur

  • 1 Schnake KJ, Schroeder GD, Vaccaro AR. et al. AOSpine classification systems (subaxial, thoracolumbar). J Orthop Trauma 2017; 31 (Suppl. 04) S14-S23
  • 2 Chang V, Ellingson BM, Salamon N. et al. The risk of acute spinal cord injury after minor trauma in patients with preexisting cervical stenosis. Neurosurgery 2015; 77: 561-565
  • 3 Stein DM, Kufera JA, Ho SM. et al. Occupant and crash characteristics for case occupants with cervical spine injuries sustained in motor vehicle collisions. J Trauma 2011; 70: 299-309
  • 4 Tewari MK, Gifti DS, Singh P. et al. Diagnosis and prognostication of adult spinal cord injury without radiographic abnormality using magnetic resonance imaging: analysis of 40 patients. Surg Neurol 2005; 63: 204-209
  • 5 Kato H, Kimura A, Sasaki R. et al. Cervical spinal cord injury without bony injury: a multicenter retrospective study of emergency and critical care centers in Japan. J Trauma 2008; 65: 373-379
  • 6 Aarabi B, Alexander M, Mirvis SE. et al. Predictors of outcome in acute traumatic central cord syndrome due to spinal stenosis. J Neurosurg Spine 2011; 14: 122-130
  • 7 Koyanagi I, Iwasaki Y, Hida K. et al. Acute cervical cord injury without fracture or dislocation of the spinal column. J Neurosurg 2000; 93: 15-20
  • 8 Chikuda H, Yasunaga H, Takeshita K. et al. Mortality and morbidity after high-dose methylprednisolone treatment in patients with acute cervical spinal cord injury: a propensity-matched analysis using a nationwide administrative database. Emerg Med J 2014; 31: 201-206
  • 9 Tetreault LA, Karadimas S, Wilson JR. et al. The natural history of degenerative cervical myelopathy and the rate of hospitalization following spinal cord injury: an updated systematic review. Global Spine J 2017; 7 (3 Suppl.): 28S-34S
  • 10 Wu JC, Chen YC, Liu L. et al. Conservatively treated ossification of the posterior longitudinal ligament increases the risk of spinal cord injury: a nationwide cohort study. J Neurotrauma 2012; 29: 462-468
  • 11 Wu JC, Ko CC, Yen YS. et al. Epidemiology of cervical spondylotic myelopathy and its risk of causing spinal cord injury: a national cohort study. Neurosurg Focus 2013; 35: E10
  • 12 Takao T, Morishita Y, Okada S. et al. Clinical relationship between cervical spinal canal stenosis and traumatic cervical spinal cord injury without major fracture or dislocation. Eur Spine J 2013; 22: 2228-2231
  • 13 Fehlings MG, Tetreault LA, Kurpad S. et al. Change in functional impairment, disability, and quality of life following operative treatment for degenerative cervical myelopathy: a systematic review and meta-analysis. Global Spine J 2017; 7 (3 Suppl.): 53S-69S
  • 14 Nouri A, Montejo J, Sun X. et al. Cervical cord-canal mismatch: a new method for identifying predisposition to spinal cord injury. World Neurosurg 2017; 108: 112-117
  • 15 Ganau M, Holly LT, Mizuno J. et al. Future directions and new technologies for the management of degenerative cervical myelopathy. Neurosurg Clin N Am 2018; 29: 185-193
  • 16 Schleicher P, Scholz M, Kandziora F. et al. Therapieempfehlungen zur Versorgung von Verletzungen der subaxialen Halswirbelsäule. Z Orthop Unfall 2017; 155: 556-566
  • 17 Fehlings MG, Tetreault LA, Wilson JR. et al. A clinical practice guideline for the management of acute spinal cord injury: introduction, rationale, and scope. Global Spine J 2017; 7 (3 Suppl.): 84S-94S
  • 18 Fehlings MG, Martin AR, Tetreault LA. et al. A clinical practice guideline for the management of patients with acute spinal cord injury: recommendations on the role of baseline magnetic resonance imaging in clinical decision making and outcome prediction. Global Spine J 2017; 7 (3 Suppl.): 221S-230S
  • 19 Boldin C, Raith J, Fankhauser F. et al. Predicting neurologic recovery in cervical spinal cord injury with postoperative MR imaging. Spine (Phila Pa 1976) 2006; 31: 554-559
  • 20 Song KJ, Choi BW, Kim SJ. et al. The relationship between spinal stenosis and neurological outcome in traumatic cervical spine injury: an analysis using Pavlovʼs ratio, spinal cord area, and spinal canal area. Clin Orthop Surg 2009; 1: 11-18
  • 21 Wilson JR, Arnold PM, Singh A. et al. Clinical prediction model for acute inpatient complications after traumatic cervical spinal cord injury: a subanalysis from the Surgical Timing in Acute Spinal Cord Injury Study. J Neurosurg Spine 2012; 17: 46-51
  • 22 Kurpad S, Martin AR, Tetreault LA. et al. Impact of baseline magnetic resonance imaging on neurologic, functional, and safety outcomes in patients with acute traumatic spinal cord injury. Global Spine J 2017; 7 (3 Suppl.): 151S-174S
  • 23 Rhee J, Tetreault LA, Chapman JR. et al. Nonoperative versus operative management for the treatment degenerative cervical myelopathy: an updated systematic review. Global Spine J 2017; 7 (3 Suppl.): 35S-41S
  • 24 Fehlings MG, Tetreault LA, Riew KD. et al. A clinical practice guideline for the management of patients with degenerative cervical myelopathy: recommendations for patients with mild, moderate, and severe disease and nonmyelopathic patients with evidence of cord compression. Global Spine J 2017; 7 (3 Suppl.): 70S-83S
  • 25 Takao T, Okada S, Morishita Y. et al. Clinical influence of cervical spinal canal stenosis on neurological outcome after traumatic cervical spinal cord injury without major fracture or dislocation. Asian Spine J 2016; 10: 536-542
  • 26 Chen LF, Tu TH, Chen YC. et al. Risk of spinal cord injury in patients with cervical spondylotic myelopathy and ossification of posterior longitudinal ligament: a national cohort study. Neurosurg Focus 2016; 40: E4
  • 27 Fehlings MG, Wilson JR, Tetreault LA. et al. A clinical practice guideline for the management of patients with acute spinal cord injury: recommendations on the use of methylprednisolone sodium succinate. Global Spine J 2017; 7 (3 Suppl.): 203S-211S
  • 28 Pointillart V, Petitjean ME, Wiart L. et al. Pharmacological therapy of spinal cord injury during the acute phase. Spinal Cord 2000; 38: 71-76
  • 29 Fehlings MG, Wilson JR, Harrop JS. et al. Efficacy and safety of methylprednisolone sodium succinate in acute spinal cord injury: a systematic review. Global Spine J 2017; 7 (3 Suppl.): 116S-137S
  • 30 Jia YF, Gao HL, Ma LJ. et al. Effect of nimodipine on rat spinal cord injury. Genet Mol Res 2015; 14: 1269-1276
  • 31 Fehlings MG, Kopjar B, Grossman RG. 329 Efficacy and safety of riluzole in acute spinal cord injury: rationale and design of aospine phase III multicenter double-blinded randomized controlled trial (RISCIS). Neurosurgery 2016; 63 (Suppl. 01) S196
  • 32 Fehlings MG, Kim KD, Aarabi B. et al. Rho inhibitor VX-210 in acute traumatic subaxial cervical spinal cord injury: Design of the SPinal cord injury Rho INhibition investiGation (SPRING) clinical trial. J Neurotrauma 2018; DOI: 10.1089/neu.2017.5434.
  • 33 Kawano O, Ueta T, Shiba K. et al. Outcome of decompression surgery for cervical spinal cord injury without bone and disc injury in patients with spinal cord compression: a multicenter prospective study. Spinal Cord 2010; 48: 548-553
  • 34 La Rosa G, Conti A, Cardali S. et al. Does early decompression improve neurological outcome of spinal cord injured patients? Appraisal of the literature using a meta-analytical approach. Spinal Cord 2004; 42: 503-512
  • 35 Chikuda H, Seichi A, Takeshita K. et al. Acute cervical spinal cord injury complicated by preexisting ossification of the posterior longitudinal ligament: a multicenter study. Spine (Phila Pa 1976) 2011; 36: 1453-1458
  • 36 Fehlings MG, Tetreault LA, Wilson JR. et al. A clinical practice guideline for the management of patients with acute spinal cord injury and central cord syndrome: recommendations on the timing (≤ 24 hours versus > 24 hours) of decompressive surgery. Global Spine J 2017; 7 (3 Suppl.): 195S-202S
  • 37 Wilson JR, Tetreault LA, Kwon BK. et al. Timing of decompression in patients with acute spinal cord injury: a systematic review. Global Spine J 2017; 7 (3 Suppl.): 95S-115S
  • 38 Ditunno JF, Little JW, Tessler A. et al. Spinal shock revisited: a four-phase model. Spinal Cord 2004; 42: 383-395
  • 39 Carlson GD, Gorden CD, Oliff HS. et al. Sustained spinal cord compression: part I: time-dependent effect on long-term pathophysiology. J Bone Joint Surg Am 2003; 85-A: 86-94
  • 40 Dimar 2nd JR, Glassman SD, Raque GH. The influence of spinal canal narrowing and timing of decompression on neurologic recovery after spinal cord contusion in a rat model. Spine (Phila Pa 1976) 1999; 24: 1623-1633
  • 41 Vaccaro AR, Daugherty RJ, Sheehan TP. et al. Neurologic outcome of early versus late surgery for cervical spinal cord injury. Spine (Phila Pa 1976) 1997; 22: 2609-2613
  • 42 Chen TY, Dickman CA, Eleraky M. et al. The role of decompression for acute incomplete cervical spinal cord injury in cervical spondylosis. Spine (Phila Pa 1976) 1998; 23: 2398-2403
  • 43 Lenehan B, Fisher CG, Vaccaro A. et al. The urgency of surgical decompression in acute central cord injuries with spondylosis and without instability. Spine (Phila Pa 1976) 2010; 35 (21 Suppl.): S180-S186
  • 44 Fehlings MG, Vaccaro A, Wilson JR. et al. Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLoS One 2012; 7: e32037
  • 45 Chikuda H, Ohtsu H, Ogata T. et al. Optimal treatment for spinal cord injury associated with cervical canal stenosis (OSCIS): a study protocol for a randomized controlled trial comparing early versus delayed surgery. Trials 2013; 14: 245
  • 46 Aarabi B, Hadley MN, Dhall SS. et al. Management of acute traumatic central cord syndrome (ATCCS). Neurosurgery 2013; 72 (Suppl. 02) S195-S204
  • 47 Rao RD, Gourab K, David KS. Operative treatment of cervical spondylotic myelopathy. J Bone Joint Surg Am 2006; 88: 1619-1640
  • 48 Ghogawala Z. Anterior cervical option to manage degenerative cervical myelopathy. Neurosurg Clin N Am 2018; 29: 83-89
  • 49 Mummaneni PV, Kaiser MG, Matz PG. Cervical surgical techniques for the treatment of cervical spondylotic myelopathy. J Neurosurg Spine 2009; 11: 130-141
  • 50 Yoon ST, Konopka JA, Wang JC. et al. ACDF graft selection by surgeons: survey of AOSpine members. Global Spine J 2017; 7: 410-416
  • 51 Hartmann S, Tschugg A, Obernauer J. Cervical corpectomies: results of a survey and review of the literature on diagnosis, indications, and surgical technique. Acta Neurochir (Wien) 2016; 158: 1859-1867
  • 52 Kersten RF, van Gaalen SM, de Gast A. et al. Polyetheretherketone (PEEK) cages in cervical applications: a systematic review. Spine J 2015; 15: 1446-1460
  • 53 Schulz C, Mauer UM, Mathieu R. Implantatassoziierte Komplikationen sowie klinischer und radiologischer Verlauf nach anteriorer zervikaler Korpektomie und Cage-Fusion – retrospektiver Vergleich von PEEK- gegen Titan-Cages. Z Orthop Unfall 2017; 155: 201-208
  • 54 Meyer F, Börm W, Thomé C. Degenerative cervical spinal stenosis: current strategies in diagnosis and treatment. Dtsch Arztebl Int 2008; 105: 366-372
  • 55 Lawrence BD, Brodke DS. Posterior surgery for cervical myelopathy: indications, techniques, and outcomes. Orthop Clin North Am 2012; 43: 29-40
  • 56 Yoon ST, Hashimoto RE, Raich A. et al. Outcomes after laminoplasty compared with laminectomy and fusion in patients with cervical myelopathy: a systematic review. Spine (Phila Pa 1976) 2013; 38 (22 Suppl. 1): S183-S194
  • 57 Schulz C, Kunz U, Mauer UM. et al. Selektive dorsale Dekompression der degenerativen Zervikalstenose. Orthopäde 2014; 43: 568-574
  • 58 Varsos GV, Werndle MC, Czosnyka ZH. et al. Intraspinal pressure and spinal cord perfusion pressure after spinal cord injury: an observational study. J Neurosurg Spine 2015; 23: 763-771
  • 59 Phang I, Zoumprouli A, Saadoun S. et al. Safety profile and probe placement accuracy of intraspinal pressure monitoring for traumatic spinal cord injury: Injured Spinal Cord Pressure Evaluation study. J Neurosurg Spine 2016; 25: 398-405
  • 60 Saadoun S, Chen S, Papadopoulos MC. Intraspinal pressure and spinal cord perfusion pressure predict neurological outcome after traumatic spinal cord injury. J Neurol Neurosurg Psychiatry 2017; 88: 452-453
  • 61 Tykocki T, Poniatowski Ł, Czyż M. et al. Intraspinal pressure monitoring and extensive duroplasty in the acute phase of traumatic spinal cord injury: a systematic review. World Neurosurg 2017; 105: 145-152
  • 62 Phang I, Zoumprouli A, Papadopoulos MC. et al. Microdialysis to optimize cord perfusion and drug delivery in spinal cord injury. Ann Neurol 2016; 80: 522-531
  • 63 Elbel M, Kramer M, Huber-Lang M. et al. Deceleration during ‘real life’ motor vehicle collisions – a sensitive predictor for the risk of sustaining a cervical spine injury?. Patient Saf Surg 2009; 3: 5