CC BY-NC-ND 4.0 · Rev Bras Ortop (Sao Paulo) 2019; 54(01): 020-025
DOI: 10.1016/j.rbo.2017.09.011
Original Article | Artigo Original
Sociedade Brasileira de Ortopedia e Traumatologia. Published by Thieme Revnter Publicações Ltda Rio de Janeiro, Brazil

Development of a Patient-specific Guide for High Cervical Spine Fixation[*]

Artikel in mehreren Sprachen: português | English
1   Hospital Universitário Cajuru, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brasil
,
Emiliano Neves Vialle
1   Hospital Universitário Cajuru, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brasil
,
José Aguiomar Foggiattob
2   Núcleo de Prototipagem Ferramental, Departamento de Mecânica, Universidade Tecnológica Federal do Paraná, Curitiba, PR, Brasil
,
Kayo Winiccius Samuel Neves e Silva
2   Núcleo de Prototipagem Ferramental, Departamento de Mecânica, Universidade Tecnológica Federal do Paraná, Curitiba, PR, Brasil
,
Heraldo de Oliveira Mello Neto
3   Serviço de Radiologia, X-Leme, Curitiba, PR, Brasil
› Institutsangaben
Weitere Informationen

Publikationsverlauf

16. August 2017

05. September 2017

Publikationsdatum:
01. März 2019 (online)

Abstract

Objective

High cervical spine fixation represents a challenge for spine surgeons due to the complex anatomy and the risks of vascular and medullar injury. The recent advances in 3-D printing have unfolded a whole new range of options for these surgeons.

Methods

In the present study, a guide for the placement of the lateral mass screw in the C1 vertebra was developed using 3-D printing. Eight real-size models of the high cervical spine and their respective screw guides were built using computed tomography (CT) scan images. The guidewires were inserted with the help of the printed guides and then the models were analyzed with the help of CT scan images.

Results

All of the guidewires in the present study obtained a safe placement in the models, avoiding the superior and inferior articular surfaces, the vertebral foramen, and the vertebral artery.

Conclusion

The present study demonstrated the efficiency of the guide, a reliable tool for aiding the insertion of guidewires for screws in lateral masses of the C1.

* Work developed at the Hospital Universitário Cajuru, Curitiba, PR, Brazil.


 
  • Referências

  • 1 Swartz EE, Floyd RT, Cendoma M. Cervical spine functional anatomy and the biomechanics of injury due to compressive loading. J Athl Train 2005; 40 (03) 155-61
  • 2 Abumi K, Shono Y, Ito M, Taneichi H, Kotani Y, Kaneda K. Complications of pedicle screw fixation in reconstructive surgery of the cervical spine. Spine 2000; 25 (08) 962-9
  • 3 Mummaneni PV, Haid RW. Atlantoaxial fixation: overview of all techniques. Neurol India 2005; 53 (04) 408-15
  • 4 Goel A, Laheri V. Plate and screw fixation for atlanto-axial subluxation. Acta Neurochir (Wien) 1994; 129 (1-2): 47-53
  • 5 Goel A, Laheri V. Re: Harms J, Melcher P. Posterior C1-C2 fusion with polyaxial screw and rod fixation. (Spine 2001;26: 2467-71). Spine 2002; 27 (14) 1589-90
  • 6 Schulz R, Macchiavello N, Fernández E, Carredano X, Garrido O, Diaz J. , et al. Harms C1-C2 instrumentation technique: anatomo-surgical guide. Spine 2011; 36 (12) 945-50
  • 7 Currier BL, Maus TP, Eck JC, Larson DR, Yaszemski MJ. Relationship of the internal carotid artery to the anterior aspect of the C1 vertebra: implications for C1-C2 transarticular and C1 lateral mass fixation. Spine 2008; 33 (06) 635-9
  • 8 Mettler Jr FA, Koenig TR, Wagner LK, Kelsey CA. Radiation injuries after fluoroscopic procedures. Semin Ultrasound CT MR 2002; 23 (05) 428-42
  • 9 Amiot LP, Lang K, Putzier M, Zippel H, Labelle H. Comparative results between conventional and computer-assisted pedicle screw installation in the thoracic, lumbar, and sacral spine. Spine 2000; 25 (05) 606-14
  • 10 Wu AM, Shao ZX, Wang JS, Yang XD, Weng WQ, Wang XY. , et al. The accuracy of a method for printing three-dimensional spinal models. PLoS One 2015; 10 (04) e0124291
  • 11 Yang M, Li C, Li Y, Zhao Y, Wei X, Zhang G. , et al. Application of 3D rapid prototyping technology in posterior corrective surgery for Lenke 1 adolescent idiopathic scoliosis patients. Medicine (Baltimore) 2015; 94 (08) e582
  • 12 Mizutani J, Matsubara T, Fukuoka M, Tanaka N, Iguchi H, Furuya A. , et al. Application of full-scale three-dimensional models in patients with rheumatoid cervical spine. Eur Spine J 2008; 17 (05) 644-9
  • 13 Whatley BR, Kuo J, Shuai C, Damon BJ, Wen X. Fabrication of a biomimetic elastic intervertebral disk scaffold using additive manufacturing. Biofabrication 2011; 3 (01) 015004
  • 14 Xu N, Wei F, Liu X, Jiang L, Cai H, Li Z. , et al. Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with Ewing sarcoma. Spine 2016; 41 (01) E50-4
  • 15 Wu AM, Wang S, Weng WQ, Shao ZX, Yang XD, Wang JS. , et al. The radiological feature of anterior occiput-to-axis screw fixation as it guides the screw trajectory on 3D printed models: a feasibility study on 3D images and 3D printed models. Medicine (Baltimore) 2014; 93 (28) e242
  • 16 Fu M, Lin L, Kong X, Zhao W, Tang L, Li J. , et al. Construction and accuracy assessment of patient-specific biocompatible drill template for cervical anterior transpedicular screw (ATPS) insertion: an in vitro study. PLoS One 2013; 8 (01) e53580
  • 17 Sugawara T, Higashiyama N, Kaneyama S, Takabatake M, Watanabe N, Uchida F. , et al. Multistep pedicle screw insertion procedure with patient-specific lamina fit-and-lock templates for the thoracic spine: clinical article. J Neurosurg Spine 2013; 19 (02) 185-90
  • 18 Wang MY, Samudrala S. Cadaveric morphometric analysis for atlantal lateral mass screw placement. Neurosurgery 2004; 54 (06) 1436-9 , discussion 1439–40
  • 19 Ma XY, Yin QS, Wu ZH, Xia H, Liu JF, Zhong SZ. Anatomic considerations for the pedicle screw placement in the first cervical vertebra. Spine 2005; 30 (13) 1519-23
  • 20 Christensen DM, Eastlack RK, Lynch JJ, Yaszemski MJ, Currier BL. C1 anatomy and dimensions relative to lateral mass screw placement. Spine 2007; 32 (08) 844-8