Homeopathy 2015; 104(02): 69-82
DOI: 10.1016/j.homp.2015.02.007
 
Copyright © The Faculty of Homeopathy 2015

Hormesis: principles and applications

Edward J. Calabrese
Further Information

Publication History

Received22 August 2014
revised19 November 2014

accepted04 February 2015

Publication Date:
19 December 2017 (online)

Hormesis has emerged as a central concept in biological and biomedical sciences with significant implications for clinical medicine and environmental risk assessment. This paper assesses the historical foundations of the dose–response including the threshold, linear and hormetic models, the occurrence and frequency of the hormetic dose response in the pharmacological and toxicological literature, its quantitative and temporal features, and underlying mechanistic bases. Based upon this integrative foundation the application of hormesis to the process of risk assessment for non-carcinogens and carcinogens is explored.

 
  • References

  • 1 Calabrese E.J. The dose-response: a fundamental concept in toxicology. Hayes A.W., Kruger C.L. Principles and Methods of Toxicology. 6th edn. 2014. CRC Press; Boca Raton FL: 90-139.
  • 2 Slikker W., Andersen M.E., Bogdanffy M.S. et al. Dose-dependent transitions in mechanisms of toxicity. Toxicol Appl Pharmacol 2004; 201: 203-225.
  • 3 Slikker W., Andersen M.E., Bogdanffy M.S. et al. Dose-dependent transitions in mechanisms of toxicity: case studies. Toxicol Appl Pharmacol 2004; 201: 226-294.
  • 4 Clark A.J. General pharmacology. 1937. Verlag Von Julius Springer; Berlin.:
  • 5 Schakell L.F. The relation of dosage to effect. II. J Pharm Exper Ther 1925; 25: 275-288.
  • 6 Schakell L.F. Studies in protoplasm poisoning. I. Phenols. J Gen Physiol 1923; 5: 783-805.
  • 7 Schakell L.F., Williamson W., Deitchman M.M., Katzman G.M., Kleinman B.S. The relation of dosage to effect. J Pharm Exper Ther 1925; 23/24 1924 53-65.
  • 8 Clark A.J. Mode of action of drugs on cells. 1933. Arnold; London.:
  • 9 Clark A.J. Applied pharmacology. 1st edn. 1926. J&A Churchill; London: 430.
  • 10 Bliss C.I. The calculation of the dosage – mortality curve. Ann Appl Biol 1935; 22: 134-167.
  • 11 Bliss C.I. Estimating the dosage-morality curve. J Econom Entomol 1935; 25: 73-85.
  • 12 Gaddum J.H. Methods of biological assay depending on a quantal response. Med Res Counc Spec Rep Ser 1933; 183: 3-46.
  • 13 Bryan W.R., Shimkin M.D. Quantitative analysis of dose-response data obtained with three carcinogenic hydrocarbons in strain C3H male mice. J Nat Cancer Inst 1943; 3: 503-531.
  • 14 National Academy of Sciences (NAS). Drinking water and health. Washington DC 1977: 939.
  • 15 Lehman A.J., Fitzhugh O.G. 100-Fold margin of safety. Assoc Food Drug Off U S Q Bull 1953; 33: 33-35.
  • 16 Hays H.W. Obituary of Arnold J. Lehman. Toxicol Appl Pharmacol 1979; 51: 549-551.
  • 17 Stirling D., Junod S. Profiles in toxicology, Arnold J Lehman. Toxicol Sci 2002; 70: 159-160.
  • 18 National Council on Radiation Protection and Measurements (NCRPM). US National Bureau of Standards Handbook 59NCRP Rep. Permissible dose from external sources of ionizing radiation Vol 17 1954. U.S. Department of Commerce; Washington DC.:
  • 19 NAS/BEAR I Genetics Panel (W. Weaver, Chair). Genetic effects of atomic radiation. Summary Report of the Committee on Biological Effects of Atomic Radiation by the National Academy of Sciences. Science 1956; 123: 1157-1164 [Erratum, Science 124(3213):170].
  • 20 Mutscheller A. Physical standards of protection against roentgen ray dangers. Am J Roentgenol 1925; 13: 65-69.
  • 21 Calabrese E.J. Origin of the linearity-no threshold (LNT) dose response concept. Arch Toxicol 2013; 87: 1621-1633.
  • 22 Calabrese E.J. How the US National Academy of Sciences misled the world community on cancer risk assessment: new findings challenge historical foundations of the linear dose response. Arch Toxicol 2013; 87: 2063-2081.
  • 23 Rosenberg T. What the world needs now is DDT. NY Times Mag 2004; 38-43.
  • 24 Ohanian E.V. National primary drinking water regulations for additional contaminants to be regulated by 1989. Calabrese E.J., Gilbert C.E., Pastides H. Safe Drinking Water Act. Amendments, Regulation and Standards 1989. Lewis Publishers; Ann Arbor, MI: 71-82.
  • 25 National Research Council (NRC). Health risks from exposures to low levels of ionizing radiation, BEIR VII Phase 2. 2006. National Academy Press; Washington, DC.:
  • 26 Ames B.N., Gold L.S. Proceedings of the National Academy of Sciences of the United States of America. Natl Acad Sci 1990; 87: 7772-7776.
  • 27 Bruce R.D., Carlton W.W., Ferber K.H. et al. (Members of the society of toxicology ED01 task force). Re-examination of the ED01 study – adjusting for time on study. Fund Appl Toxicol 1981; 1: 67-80.
  • 28 Taubes G. Epidemiology faces its limits. Science 1995; 269: 164-169.
  • 29 Calabrese E.J., Baldwin L.A. Defining hormesis. Hum Exper Toxicol 2002; 21: 91-97.
  • 30 Calabrese E.J. Evidence that hormesis represents an “overcompensation” response to a disruption in homeostasis. Ecotoxicol Env Saf 1999; 42: 135-137.
  • 31 Calabrese E.J., Blain R. The hormesis database: an overview. Toxicol Appl Pharmacol 2005; 202: 289-300.
  • 32 Calabrese E.J., Blain R.B. Hormesis and plant biology. Environ Poll 2009; 157: 42-46.
  • 33 Calabrese E.J., Blain R.B. The hormesis database: the occurrence of hormetic dose responses in the toxicological literature. Reg Toxicol Pharmacol 2011; 61: 73-81.
  • 34 Calabrese E.J., Bachmann K.A., Bailer A.J. et al. Biological stress response terminology: integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework. Toxicol Apppl Pharmacol 2007; 222: 122-128.
  • 35 Calabrese E.J. Hormesis: changing view of the dose-response, a personal account of history and current status. Mut Res 2002; 511: 181-189.
  • 36 Calabrese E.J. Paradigm lost, paradigm found: the re-emergence of hormesis as a fundamental dose response model in the toxicological sciences. Environ Poll 2005; 138: 379-412.
  • 37 Calabrese E.J. Hormesis in pharmacology. Hacker M., Bachmann K., Messer W. Pharmacology Principles and Practice, Chapter 5 2009. Academic Press; Burlington, MA: 75-102.
  • 38 Schulz H. Zur Lehre von der Arzneiwirdung. Virchows Archiv fur Pathol Anat Physiol Klin Med 1887; 108: 423-445.
  • 39 Schulz H. Uber Hefegifte. Pflugers Archiv Gesamte Physiol Menschen Tiere 1888; 42: 517-541.
  • 40 Calabrese E.J. Historical blunders: how toxicology got the dose-response relationship half right. Cell Mol Biol 2005; 51: 643-654.
  • 41 Crump T. Contemporary medicine as presented by its practitioners themselves. Translation of Leipzig, 1923:217–250. Nonlinear Biol Toxicol Med 2003; 1: 295-318.
  • 42 Branham S.E. The effects of certain chemical compounds upon the course of gas production by baker's yeast. J Bacteriol 1929; 18: 247-264.
  • 43 Southam C.M., Ehrlich J. Effects of extracts of western red-cedar heartwood on certain wood-decaying fungi in culture. Phytopathology 1943; 33: 517-524.
  • 44 Southam C.M. A study of the saprogenicity, and factors influencing decay, of certain brown-rot fungi on western red-cedar heartwood test blocks. 1941. University of Idaho, School of Forestry; Undergraduate Thesis (unpublished).
  • 45 Bellavite P., Andrioli G., Lussignoli S. et al. A scientific reappraisal of the ‘principle of similarity’. Med Hypoth 1997; 49: 203-212.
  • 46 Bellavite P., Lussignoli S., Semizzi M.L., Ortolani R., Signorini A. The similia principle. From cellular models to regulation of homeostasis. Brit Hom J 1997; 86: 73-85.
  • 47 Calabrese E.J., Baldwin L.A. Chemical hormesis: its historical foundations as a biological hypothesis. Hum Exper Toxicol 2000; 19: 2-31.
  • 48 Calabrese E.J., Baldwin L.A. The marginalization of hormesis. Hum Exper Toxicol 2000; 19: 32-40.
  • 49 Calabrese E.J., Baldwin L.A. Radiation hormesis: its historical foundations as a biological hypothesis. Hum Exper Toxicol 2000; 19: 41-75.
  • 50 Calabrese E.J., Baldwin L.A. Radiation hormesis: the demise of a legitimate hypothesis. Hum Exper Toxicol 2000; 19: 76-84.
  • 51 Calabrese E.J., Baldwin L.A. Tales of two similar hypotheses: the risk and fall of chemical and radiation hormesis. Hum Exper Toxicol 2000; 19: 85-97.
  • 52 Salle A.J. Fundamental principles of bacteriology. 1939. McGraw-Hill Book Co.; New York: 166-167.
  • 53 Clifton C.E. Introduction to bacterial physiology. 1957. McGraw-Hill Book Co., Inc.; New York: 317-338.
  • 54 Hueppe F. Principles of bacteriology. Translated from the German by EO Jordan. 1896. The Open Court Publishing Co; Chic IL.:
  • 55 Calabrese E.J. Hormesis: why it is important to toxicology and toxicologists. Environ Toxicol Chem 2008; 27: 1451-1474.
  • 56 Calabrese E.J. Toxicology rewrites its history and rethinks its future: giving equal focus to both harmful and beneficial effects. Environ Toxicol Chem 2011; 30: 2658-2673.
  • 57 Calabrese E.J., Baldwin L.A. The frequency of U-shaped dose responses in the toxicological literature. Toxicol Sci 2001; 62: 330-338.
  • 58 Calabrese E.J., Baldwin L.A. The hormetic dose response model is more common than the threshold model in toxicology. Toxicol Sci 2003; 71: 246-250.
  • 59 Calabrese E.J., Staudenmayer J.W., Stanek E.J., Hoffmann G.R. Hormesis outperforms threshold model in National Cancer Institute antitumor drug screening database. Toxicol Sci 2006; 92: 368-378.
  • 60 Calabrese E.J., Stanek E.J., Nascarella M.A., Hoffmann G.R. Hormesis predicts low-dose responses better than threshold model. Intern J Toxicol 2008; 27: 369-378.
  • 61 Calabrese E.J. Hormetic dose-response relationships in immunology: occurrence, quantitative features of the dose response, mechanistic foundations, and clinical implications. Crit Rev Toxicol 2005; 35: 89-295.
  • 62 Calabrese E.J., Baldwin L.A. (Guest Editors) Scientific foundations of hormesis. Crit Rev Toxicol 2001; 31: 351-695.
  • 63 Calabrese E.J. Hormetic mechanisms. Crit Rev Toxicol 2013; 43: 580-606.
  • 64 Calabrese E.J. Hormesis: from marginalization to mainstream. A case for hormesis as the default dose-response model in risk assessment. Toxicol Appl Pharmacol 2004; 197: 125-136.
  • 65 Calabrese E.J., Baldwin L.A. Hormesis as a default parameter in RfD derivation. Hum Exper Toxicol 1998; 17: 444-447.
  • 66 Calabrese E.J., Cook R.R. Hormesis: how it could affect the risk assessment process. Hum Exper Toxicol 2005; 24: 265-270.
  • 67 Druckrey H. Quantitative aspects in chemical carcinogenesis. UICC Monogr Ser 1967; 7: 60-78.
  • 68 Jones H.B., Grendon A. Environmental factors in the origin of cancer and estimation of the possible hazard to man. Fd Cosmet Toxicol 1975; 13: 251-268.
  • 69 Jones H. Dose-effect relationships in carcinogenesis and the matter of threshold of carcinogenesis. Environ Health Persp 1978; 22: 171-172.
  • 70 Scribner J.D., Süss R. Tumor initiation and promotion. Inter Rev Exper Pathol 1978; 18: 137-198.
  • 71 Mitchell R.E.J. Low doses of radiation reduce risk in vivo. 14th Pacific Basin Nuclear Conference. Honolulu, HI 2004. March 21–25.
  • 72 Flood J.F., Cherkin A. Memory retention – enhancement by cholinergic drug-combinations in mice. Gerontology 1982; 22: 230-231.
  • 73 Flood J.F., Smith G.E., Cherkin A. Memory retention – potentiation of cholinergic drug-combinations in mice. Neurobiol Aging 1983; 4: 37-43.
  • 74 Flood J.F., Smith G.E., Cherkin A. Memory retention – enhancement by syntergistic oral cholinergic drug-combination in mice. Gerontology 1984; 24: 149.
  • 75 Flood J.F., Smith G.E., Cherkin A. Memory enhancement – supra-additive effect of subcutaneous cholinergic drug-combinations in mice. Psychopharmacology 1985; 86: 61-67.
  • 76 Calabrese E.J. Hormesis: Principles and applications for pharmacology and toxicology. Amer J Pharm Toxicol 2008; 3: 59-71.
  • 77 Calabrese E.J., Baldwin L.A. A general classification of U-shaped dose-response relationships in toxicology and their mechanistic foundations. Hum Exper Toxicol 1998; 17: 353-364.