Homeopathy 2015; 104(02): 101-115
DOI: 10.1016/j.homp.2015.02.001
Copyright © The Faculty of Homeopathy 2015

Gas nanobubbles and aqueous nanostructures: the crucial role of dynamization

Jean-Louis Demangeat

Subject Editor:
Further Information

Publication History

Received22 May 2014
revised24 December 2014

accepted03 February 2015

Publication Date:
23 December 2017 (online)

Nanobubbles (NBs) have been a subject of intensive research over the past decade. Their peculiar characteristics, including extremely low buoyancy, longevity, enhanced solubility of oxygen in water, zeta potentials and burst during collapse, have led to many applications in the industrial, biological and medical fields. NBs may form spontaneously from dissolved gas but the process is greatly enhanced by gas supersaturation and mechanical actions such as dynamization. Therefore, the formation of NBs during the preparation of homeopathic dilutions under atmospheric pressure cannot be ignored. I suggested in 2009 the involvement of NBs in nanometric superstructures revealed in high dilutions using NMR relaxation. These superstructures seemed to increase in size with dilution, well into the ultramolecular range (>12c).

I report here new experiments that confirm the involvement of NBs and prove the crucial role of dynamization to create superstructures specific to the solute. A second dynamization was shown to enhance or regenerate these superstructures. I postulate that superstructures result from a nucleation process of NBs around the solute, with shells of highly organized water (with ions and silicates if any) which protect the solute against out-diffusion and behave as nucleation centres for further dilution steps. The sampling tip may play an active role by catching the superstructures and thus carry the encaged solute across the dilution range, possibly up to the ultramolecular range. The superstructures were not observed at low dilution, probably because of a destructuring of the solvent by the solute and/or of an inadequate gas/solute ratio.

  • References

  • 1 Demangeat J.L., Demangeat C., Gries P., Poitevin B., Constantinesco A. Modifications des temps de relaxation RMN à 4 MHz des protons du solvant dans les très hautes dilutions salines de silice-lactose. J Med Nucl Biophys 1992; 16: 135-145.
  • 2 Demangeat J.L., Gries P., Poitevin B. Modification of 4 MHz water proton relaxation times in very high diluted aqueous solutions. Bastide M. Signals and Images. 1997. Kluwer Academic Publishers; Dordrecht: 95-110.
  • 3 Demangeat J.L., Poitevin B. Guest editorial Nuclear magnetic resonance: let's consolidate the ground before getting excited!. Br Hom J 2001; 90: 2-4.
  • 4 Demangeat J.L., Gries P., Poitevin B. et al. Low-field NMR water proton longitudinal relaxation in ultrahighly diluted aqueous solutions of silica-lactose prepared in glass material for pharmaceutical use. Appl Magn Reson 2004; 26: 465-481.
  • 5 Demangeat J.L. NMR water proton relaxation in unheated and heated ultrahigh dilutions of histamine: evidence for an air-dependent supramolecular organization of water. J Mol Liq 2009; 144: 32-39.
  • 6 Demangeat J.L. NMR relaxation evidence for solute-induced nanosized superstructures in ultramolecular aqueous dilutions of silica-lactose. J Mol Liq 2010; 155: 71-79.
  • 7 Demangeat J.L. Nanosized solvent superstructures in ultramolecular aqueous dilutions: twenty years' research using water proton relaxation. Homeopathy 2013; 102: 87-105.
  • 8 Bellavite P., Marzotto M., Olioso D., Moratti E., Conforti A. High-dilution effects revisited. 1. Physicochemical aspects. Homeopathy 2014; 103: 4-21.
  • 9 Bellavite P., Marzotto M., Olioso D., Moratti E., Conforti A. High-dilution effects revisited. 2. Pharmacodynamic mechanisms. Homeopathy 2014; 103: 22-43.
  • 10 Bell I.R., Koithan M., Brooks A.J. Testing the nanoparticle-allosteric cross-adaptation-sensitization model for homeopathic remedy effects. Homeopathy 2013; 102: 66-81.
  • 11 Bell I.R., Schwartz G.E. Adaptative network nanomedicine: an integrated model for homeopathic medicine. Front Biosci 2013; 5: 685-708.
  • 12 Upadhyay R.P., Nayak C. Homeopathy emerging as nanomedicine. Int J High Dilution Res 2011; 10: 299-310.
  • 13 Witt C.M., Lüdtke R., Weisshuhn T.E.R., Quint P., Willich S.N. The role of trace elements in homeopathic preparations and the influence of container material, storage duration, and potentisation. Forsch Komplementärmed 2006; 13: 15-21.
  • 14 Uchida T., Oshita S., Ohmori M. et al. Transmission electron microscopic observations of nanobubbles and their capture of impurities in wastewater. Nanoscale Res Lett 2001; 6: 295-304.
  • 15 Wen D. Intracellular hyperthermia. Int J Hyperth 2009; 25: 533-541.
  • 16 Ushikubo F.Y., Furukawa T., Nakagawa R. et al. Evidence of the existence and the stability of nanobubbles in water. Colloids Surfaces A: Physicochem Eng Aspects 2010; 361: 31-37.
  • 17 Agarwal A., Jern Ng W., Liu Y. Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere 2011; 84: 1175-1180.
  • 18 Zimmerman W.B., Tesai V., Bandulasena H.C.H. Towards energy efficient nanobubble generation with fluidic oscillation. Curr Opin Colloid & Interface Sci 2011; 16: 350-356.
  • 19 Ball P. Nanobubbles are not a superficial matter. ChemPhysChem 2012; 13: 2173-2177.
  • 20 Seddon J.R.T., Lohse D., Ducker W.A., Craig V.S.J. A deliberation on nanobubbles at surface and in bulk. ChemPhysChem 2012; 13: 2179-2187.
  • 21 Liu S., Kawagoe Y., Makino Y., Oshita S. Effects of nanobubbles on the physicochemical properties of water: the basis for peculiar properties of water containing nanobubbles. Chem Eng Sci 2013; 93: 250-256.
  • 22 Bunkin N.F., Ninham B.W., Ignatiev P.S., Kozlov V.A., Shkirin A.V., Starosvestskij A.V. Long-living nanobubbles of dissolved gas in aqueous solutions of salts and erythrocyte suspensions. J Biophot 2011; 4: 150-164.
  • 23 Bunkin N.F., Yurchenko S.O., Suyazov N.V., Shkirin A.V. Structure of the nanobubble clusters of dissolved air in liquid media. J Biol Phys 2012; 38: 121-152.
  • 24 Rein ten Wolde P., Chandler D. Drying-induced hydrophobic polymer collapse. PNAS 2002; 99: 6539-6543.
  • 25 Huang X., Margulis C.J., Berne B.J. Dewetting-induced collapse of hydrophobic particles. PNAS 2003; 100: 11953-11958.
  • 26 Zhou R., Huang X., Margulis C.J., Berne B.J. Hydrophobic collapse in multidomain protein folding. Science 2004; 305: 1605-1609.
  • 27 Dzubiella J. Explicit and implicit modeling of nanobubbles in hydrophobic confinement. An Acad Bras Cienc 2010; 82: 3-12.
  • 28 Roth R., Gillepsie D., Nonner W., Eisenberg R.E. Bubbles, gating, and anesthetics in ion channels. Biophys J 2008; 94: 4282-4298.
  • 29 Ohgaki K., Khanh N.Q., Joden Y., Tsuji A., Nakagawa T. Physicochemical approach to nanobubble solutions. Chem Eng Sci 2010; 65: 1296-1300.
  • 30 Duval E., Adichtchev S., Sirotkin S., Mermet A. Long-lived submicrometric bubbles in very diluted alkali halide water solutions. PhysChemChemPhys 2012; 14: 4125-4132.
  • 31 Colic M., Morse D. Influence of resonant rf radiation on gas/liquid interface: can it be a quantum vacuum radiation?. Phys Rev Lett 1998; 80: 2465-2468.
  • 32 Katsir Y., Miller L., Aharonov Y., Jacob E.B. The effect of rf-irradiation on electrochemical deposition and its stabilization by nanoparticle doping. J Electrochem Soc 2007; 154: D249-D259.
  • 33 Bunkin N.F., Bunkin F.W. Bubbstons: stable microscopic gas bubbles in very dilute electrolytic solutions. Sov Phys JETP 1992; 74: 271-278.
  • 34 Jin F., Ye X., Wu C. Observation of kinetic and structural scalings during slow coalescence of nanobubbles in aqueous solution. J Phys Chem B 2007; 111: 13143-13146.
  • 35 Hampton M.A., Nguyen A.V. Nanobubbles and the nanobubble bridging capillary force. Adv Colloid Interface Sci 2010; 154: 30-55.
  • 36 Ducker W.A. Contact angle and stability of interfacial nanobubbles. Langmuir 2009; 25: 8907-8910.
  • 37 Jin F., Ye J., Hong L., Lam H., Wu C. Slow relaxation mode in mixtures of water and organic molecules: supramolecular structures or nanobubbles?. J Phys Chem B 2007; 111: 2255-2261.
  • 38 Sedlak M. Large-scale supramolecular structure in solutions of low molar mass compounds and mixtures of liquids: I. Light scattering characterization. J Phys Chem B 2006; 110: 4329-4338.
  • 39 Sedlak M. Large-scale supramolecular structure in solutions of low molar mass compounds and mixtures of liquids: II. Kinetics of the formation and long-time stability. J Phys Chem B 2006; 110: 4339-4345.
  • 40 Bunkin N.F., Suyazov N.V., Shkirin A.V., Ignat’ev P.S., Indukaev K.V. Cluster structure of stable dissolved gas nanobubbles in highly purified water. J Experim Theor Phys 2009; 108: 800-816.
  • 41 Brenner M.P., Lohse D. Dynamic equilibrium mechanism for surface nanobubble stabilization. Phys Rev Lett 2008; 101 214505 (1-4).
  • 42 Attard P. The stability of nanobubbles. Eur Phys J Spec Top 2013; DOI: 10.1140/epjst/e2013-01817-0.
  • 43 Parker J.L., Claesson P.M., Attard P. Bubbles, cavities, and the long-range attraction between hydrophobic surfaces. J Phys Chem 1994; 98: 8468-8480.
  • 44 Meagher L., Craig V.S.J. Effect of dissolved gas and salt on the hydrophobic force between polypropylene surfaces. Langmuir 1994; 10: 2736-2742.
  • 45 Considine R.F., Hayes R.A., Horn R.G. Forces measured between latex spheres in aqueous electrolyte: non-DLVO behaviour and sensitivity to dissolved gas. Langmuir 1999; 15: 1657-1659.
  • 46 Stevens H., Considine R.F., Drummond C.J., Hayes R.A., Attard P. Effects of degassing on the long-range attractive force between hydrophobic surfaces in water. Langmuir 2005; 21: 6399-6405.
  • 47 Zhang X., Kumar A., Scales P.J. Effects of solvency and interfacial nanobubbles on surface forces and bubble attachment at solid surfaces. Langmuir 2011; 27: 2484-2491.
  • 48 Bunkin N.F., Lobeyev A.V. Fractal structure of bubston clusters in water and aqueous electrolyte solutions. JETP Lett 1993; 58: 94-100.
  • 49 Bunkin N.F., Lobeyev A.V., Vinogradova O.I., Movchan T.G., Kuklin A.I. Presence of submicroscopic air bubbles in water. Small-angle neutron scattering experiment. JETP Lett 1995; 62: 685-688.
  • 50 Zhang X.H., Khan A., Ducker W.A. A nanoscale gas state. Phys Rev Lett 2007; 98 136101 (1-4).
  • 51 Carambassis A., Jonker L.C., Attard P., Rutland M.W. Forces measured between hydrophobic surfaces due to a submicroscopic bridging bubble. Phys Rev Lett 1998; 80: 5357-5360.
  • 52 Ishida N., Inoue T., Miyahara M., Higashitani K. Nanobubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy. Langmuir 2000; 16: 6377-6380.
  • 53 Lou S.T., Ouyang Z.Q., Zhang Y. et al. Nanobubbles on solid surface imaged by atomic force microscopy. J Vac Sci Technol B 2000; 18: 2573-2575.
  • 54 Switkes M., Ruberti J.W. Rapid cryofixation/freeze fracture for the study of nanobubbles at solid-liquid interfaces. Appl Phys Lett 2004; 84: 4759-4761.
  • 55 Karpitschka S., Dietrich E., Seddon J.R.T., Zandvliet H.J.W., Lohse D., Riegler H. Nonintrusive optical visualization of surface nanobubbles. Phys Rev Lett 2012; 109 066102 (1-5).
  • 56 Yakubov G.E., Butt H.J., Vinogradova O.I. Interaction forces between hydrophobic surfaces. Attractive jump as an indication of formation of “stable” submicrocavities. J Phys Chem B 2000; 104: 3407-3410.
  • 57 Vinogradova O.I., Yakubov G.E. Forces between polystyrene surfaces in water-electrolyte solutions: long-range attraction of two types?. J Chem Phys 2001; 114: 8124-8131.
  • 58 Thormann E., Simonsen A.C., Hansen P.L., Mouritsen O.G. Force trace hysteresis and temperature dependence of bridging nanobubble induced forces between hydrophobic surfaces. ACS Nano 2008; 2: 1817-1824.
  • 59 Steitz R., Gutberlet T., Hauss T. et al. Nanobubbles and their precursor layer at the interface of water against an hydrophobic substrate. Langmuir 2003; 19: 2409-2418.
  • 60 Simonsen A.C., Hansen P.L., Klösgen B. Nanobubbles give evidence of incomplete wetting at a hydrophobic interface. J Colloid Interface Sci 2004; 273: 291-299.
  • 61 Mezger M., Schoder S., Reichert H. et al. Water and ice in contact with octadecyl-trichlorosilane functionalized surfaces: a high resolution X-ray reflectivity study. J Chem Phys 2008; 128 244705 (1-13).
  • 62 Auerbach D. Mass, fluid and wave motion during the preparation of ultra high dilutions. Endler P.C., Schulte J. Ultra High Dilution. Physiology and Physics . 1994. Kluwer Academic Publishers; Dordrecht: 129-135.
  • 63 Vinograda O.I., Bunkin N.F., Churaev N.V., Kiseleva O.A., Lobeyev A.V., Ninham B.W. Submicrocavity structure of water between hydrophobic and hydrophilic walls as revealed by optical cavitation. J Colloid Interface Sci 1995; 173: 443-447.
  • 64 Bhattacharyya S.S., Mandal S.K., Biswas R. et al. In vitro studies demonstrate anticancer activity of an alcaloid of the plant gelsemium sempervirens. Exp Biol Med 2008; 233: 1591-1601.
  • 65 Chikramane P.S., Kalita D., Suresh A.K., Kane S.G., Bellare J.R. Why extreme dilutions reach non-zero asymptotes: a nanoparticulate hypothesis based on froth flotation. Langmuir 2012; 28: 15864-15875.
  • 66 Roy R., Tiller W.A., Bell I., Hoover M.R. The structure of liquid water; novel insights from material research; potential relevance to homeopathy. Mat Res Innov 2005; 9: 577-608.
  • 67 Tiezzi E. NMR evidence of a supramolecular structure of water. Ann Chim 2003; 93: 471-476.
  • 68 Kondrachuk A.V., Krasnogolovets V.V., Ovcharenko A.I., Chesnokov E.D. Determination of water structuring by the pulsed NMR method. Sov J Chem Phys 1994; 12: 1485-1492.
  • 69 Montagnier L., Aïssa J., Ferris S., Montagnier J.L., Lavallée C. Electromagnetic signals are produced by aqueous nanostructures derived from bacterial DNA sequences. Interdiscip Sci Comput Life Sci 2009; 1: 81-90.
  • 70 Hahnemann S. O'Reilly W.B. Organon of the Medical Art. 6th edn. 1842. Birdcage Books; Redmond WA: 1996.
  • 71 Elia V., Baiano S., Duro I., Napoli E., Niccoli M., Nonatelli L. Permanent physico-chemical properties of extremely diluted aqueous solutions of homeopathic medicines. Homeopathy 2004; 93: 144-150.
  • 72 Elia V., Napoli E., Niccoli M., Nonatelli M., Ramaglia A., Ventimiglia E. New physico-chemical properties of extremely diluted aqueous solutions. J Therm Anal Calorim 2004; 78: 331-342.
  • 73 Elia V., Niccoli M. New physico-chemical properties of extremely diluted aqueous solutions. J Therm Anal Calorim 2004; 75: 815-836.
  • 74 Cacace C.M., Elia L., Elia V., Napoli E., Niccoli M. Conductometric and pHmetric titrations of extremely diluted solutions using HCl solutions as titrant. J Mol Liq 2009; 146: 122-126.
  • 75 Elia V., Napoli E., Niccoli M. Thermodynamic parameters for the binding process of the OH ion with the dissipative structures. Calorimetric and conductometric titrations. J Therm Anal Calorim 2010; 102: 1111-1118.
  • 76 Elia V., Marrari L.A., Napoli E. Aqueous nanostructures in water induced by electromagnetic fields emitted by EDS. A conductometric study of fullerene and carbon nanotube EDS. J Therm Anal Calorim 2012; 107: 843-851.
  • 77 Vybiral B., Voracek P. Long term structural effects in water: autothixotropy of water and its hysteresis. Homeopathy 2007; 96: 183-188.
  • 78 Lippincott E.R., Stromberg R.R., Grant W.H., Cessac G.L. Polywater: vibrational spectra indicate unique stable polymeric structure. Science 1969; 164: 1482-1487.
  • 79 Cherkin A. “Anomalous” water: a silica dispersion?. Nat 1969; 224: 1293.
  • 80 Morariu V.V., Mills R., Woolf L.A. Equivalence of anomalous water and silicic acid solutions. Nature 1970; 227: 373-374.
  • 81 Chaplin M. Water structure and science. Hydrophobic hydration. < http://www1.Isbu.ac.uk/water/phobic.html#r519 [accessed 9.05.14].
  • 82 Rey L. Thermoluminescence of ultra-high dilutions of lithium chloride and sodium chloride. Phys A 2003; 323: 67-74.
  • 83 Roduner E. Size matters: why nanomaterials are different. Chem Soc Rev 2006; 35: 583-592.
  • 84 Belon P., Cumps J., Ennis M. et al. Histamine dilutions modulate basophil activation. Inflamm Res 2004; 53: 181-188.
  • 85 Conforti A., Signorini A., Bellavite P. Effects of high dilutions of histamin and other natural compounds on acute inflammation in rats. Bornoroni C. Omeomed Vol 92. 1993. Editrice Compositori; Bologne: 163-169.
  • 86 Calabrese E.J. Paradigm lost, paradigm found: the re-emergence of hormesis as a fundamental dose-response model in the toxicological sciences. Environm Pollut 2005; 138: 378-411.
  • 87 Lo S.-Y., Li W. Onsager's formula, conductivity, and possible new phase transition. Mod Phys Lett B 1999; 13: 885-893.
  • 88 Lo S.-Y., Geng X., Gann D. Evidence for the existence of stable-water-clusters at room temperature and normal pressure. Phys Lett A 2009; 373: 3872-3876.
  • 89 Shibkov A.A., Golovin Y.I., Zheltov M.A., Korolev A.A., Leonov A.A. In situ monitoring of growth of ice from supercooled water by a new electromagnetic method. J Cryst Growth 2002; 236: 434-440.
  • 90 Samal S., Geckeler K.E. Unexpected solute aggregation in water on dilution. Chem Commun 2001; 2224-2225.
  • 91 Kononov L.O., Tsvetkov D.E., Orlova A.V. Conceivably the first example of a phase transition in aqueous solutions of oligosaccharide glycosides. Evidence from variable-temperature1H NMR and optical rotation measurements for a solution of allyl lactoside. Russ Chem Bull 2002; 51: 1337-1338.
  • 92 Yinnon C.A., Yinnon T.A. Domains in aqueous solutions: theory and experimental evidence. Mod Phys Lett B 2009; 23: 1959-1973.
  • 93 Yinnon T.A., Yinnon C.A. Domains of solvated ions in aqueous solutions, their characteristics and impact on electric conductivity: theory and experimental evidence. Mod Phys Lett B 2012; 26 1150006 (1-14).
  • 94 Anick D.J., Ives J.A. The silica hypothesis for homeopathy: physical chemistry. Homeopathy 2007; 96: 189-195.
  • 95 Ives J.A., Moffett J.R., Arun P. et al. Enzyme stabilization by glass-derived silicates in glass-exposed aqueous solutions. Homeopathy 2010; 99: 15-24.
  • 96 Teixeira J. Can water possibly have a memory? A sceptical view. Homeopathy 2007; 96: 158-162.
  • 97 Zacharias C.R. Contaminants in commercial homoeopathic medicines. Br Homoeop J 1995; 84: 71-74.
  • 98 Zhang X.H., Wu Z.H., Zhang X.D., Li G., Hu J. Nanobubbles at the interface of HOPG and ethanol solution. Int J Nanosci 4 2005; 399-407 and Errata Int J Nanosci 2010; 9: 383–384.
  • 99 Chaplin MF. Water structure and science, http://www.Isbu.ac.uk/water/index2.html.
  • 100 Elia V. Physicochemical properties of perturbed water: facts and enigmas. Int J High Dilution Res 11 2012; 110-112.
  • 101 Silva G.A. Nanotechnology approaches to crossing the blood-brain barrier and drug delivery to the SNC. BMC Neurosci 2008; 9 (Suppl. 03) S4.
  • 102 Buzea C., Pacheco I.I., Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2 2007; MR 17-71.
  • 103 Iavicoli I., Calabrese E.J., Nascarella M.A. Exposure to nanoparticles and hormesis. Dose Response 8 2010; 501-517.
  • 104 Barve R., Chaughule R. Size-dependent in vivo/in vitro results of homoeopathic herbal extracts. J Nanostructure Chem 3 2013; 18-22.
  • 105 Sarkar S., Zhang L., Subramaniam P. et al. Variability in bioreactivity linked to changes in size and zeta potential of diesel exhaust particles in human immune cells. PLoS One 9 2014; e97304.