Homeopathy 2015; 104(02): 123-138
DOI: 10.1016/j.homp.2014.11.003
Original Paper
Copyright © The Faculty of Homeopathy 2014

Enhancement of adaptive biological effects by nanotechnology preparation methods in homeopathic medicines

Iris R. Bell
1   Department of Family and Community Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
2   Arizona Center for Integrative Medicine (Department of Medicine), University of Arizona College of Medicine, Tucson, AZ, USA
3   University of Arizona College of Nursing, University of Arizona, Tucson, AZ, USA
,
Gary E. Schwartz
2   Arizona Center for Integrative Medicine (Department of Medicine), University of Arizona College of Medicine, Tucson, AZ, USA
4   Department of Psychology, University of Arizona, Tucson, AZ, USA
› Institutsangaben

Verantwortlicher Herausgeber dieser Rubrik:
Weitere Informationen

Publikationsverlauf

Received03. Mai 2014

accepted16. November 2014

Publikationsdatum:
23. Dezember 2017 (online)

Multiple studies have demonstrated that traditional homeopathic manufacturing reagents and processes can generate remedy source and silica nanoparticles (NPs). Homeopathically-made NPs would initiate adaptive changes in an organism as a complex adaptive system (CAS) or network. Adaptive changes would emerge from several different endogenous amplification processes that respond to exogenous danger or threat signals that manufactured nanomaterials convey, including (1) stochastic resonance (SR) in sensory neural systems and (2) time-dependent sensitization (TDS)/oscillation. SR is nonlinear coherent amplification of a weak signal by the superposition of a larger magnitude white noise containing within it the same frequencies of the weak signal. TDS is progressive response magnitude amplification and oscillatory reversal in response direction to a given low dose at physiological limits with the passage of time.

Hormesis is an overarching adaptive phenomenon that reflects the observed nonlinear adaptive dose–response relationship. Remedies would act as enhanced micro- and nanoscale forms of their source material via direct local ligand-receptor interactions at very low potencies and/or by triggering systemic adaptive network dynamical effects via their NP-based electromagnetic, optical, and quantum mechanical properties at higher potencies.

Manufacturing parameters including dilution modify sizes, shapes, and surface charges of nanoparticles, thereby causing differences in physico-chemical properties and biological effects. Based on surface area, size, shape, and charge, nanoparticles adsorb a complex pattern of serum proteins, forming a protein corona on contact that constitutes a unique biological identity. The protein corona may capture individualized dysfunctional biological mediator information of the organism onto the surfaces of the salient, i.e., resonant, remedy nanostructures.

SR would amplify this weak signal from the salient remedy NPs with protein corona adsorbed, leading to sensitized nonlinear dynamical modulation of gene expression and associated changes in biological signaling pathways. When the system reaches its physiological limits during a homeopathic aggravation or the natural disease state, the amplified remedy signal triggers a nonlinear reversal in dynamical direction back towards health.

 
  • References

  • 1 Chikramane P.S., Suresh A.K., Bellare J.R., Kane S.G. Extreme homeopathic dilutions retain starting materials: a nanoparticulate perspective. Homeopathy 2010; 99 (04) 231-242.
  • 2 Bell I.R., Koithan M. A model for homeopathic remedy effects: low dose nanoparticles, allostatic cross-adaptation, and time-dependent sensitization in a complex adaptive system. BMC Complement Altern Med 2012; 12 (01) 191.
  • 3 Bell I.R., Koithan M., Brooks A.J. Testing the nanoparticle-allostatic cross-adaptation-sensitization model for homeopathic remedy effects. Homeopathy 2013; 102: 66-81.
  • 4 Bell I.R., Schwartz G.E. Adaptive network nanomedicine: an integrated model for homeopathic medicine. Front Biosci (Scholar Ed.) 2013; 5 (02) 685-708.
  • 5 Ives J.A., Moffett J.R., Arun P. et al. Enzyme stabilization by glass-derived silicates in glass-exposed aqueous solutions. Homeopathy 2010; 99 (01) 15-24 Jan.
  • 6 Mikhaylov A.N., Tetelbaum D.I., Burdov V.A. et al. Effect of ion doping with donor and acceptor impurities on intensity and lifetime of photoluminescence from SiO2 films with silicon quantum dots. J Nanosci Nanotechnol 2008; 8 (02) 780-788 Feb.
  • 7 Montalti M., Prodi L., Rampazzo E., Zaccheroni N. Dye-doped silica nanoparticles as luminescent organized systems for nanomedicine. Chem Soc Rev Mar 19 2014; 21 (09) 2527-2538.
  • 8 Bonnaud P.A., Coasne B., Pellenq R.J. Molecular simulation of water confined in nanoporous silica. J Phys Condens Matter Jul 21 2010; 22 (28) 284110.
  • 9 Liberman A., Martinez H.P., Ta C.N. et al. Hollow silica and silica-boron nano/microparticles for contrast-enhanced ultrasound to detect small tumors. Biomaterials Jul 2012; 33 (20) 5124-5129.
  • 10 Pohaku Mitchell K.K., Liberman A., Kummel A.C., Trogler W.C. Iron(III)-doped, silica nanoshells: a biodegradable form of silica. J Am Chem Soc Aug 29 2012; 134 (34) 13997-14003.
  • 11 Imakita K., Ito M., Fujii M., Hayashi S. Nonlinear optical properties of phosphorous-doped Si nanocrystals embedded in phosphosilicate glass thin films. Opt Express Apr 27 2009; 17 (09) 7368-7376.
  • 12 Rukhlenko I.D., Zhu W., Premaratne M., Agrawal G.P. Effective third-order susceptibility of silicon-nanocrystal-doped silica. Opt Express Nov 19 2012; 20 (24) 26275-26284.
  • 13 Winnik F.M., Maysinger D. Quantum dot cytotoxicity and ways to reduce it. Acc Chem Res Jul 9 2013; 46 (03) 672-680.
  • 14 Wang Q., Bao Y., Ahire J., Chao Y. Co-encapsulation of biodegradable nanoparticles with silicon quantum dots and quercetin for monitored delivery. Adv Healthc Mater Sep 26 2013; 2 (03) 459-466.
  • 15 Zhang Y., Han X., Zhang J. et al. Photoluminescence of silicon quantum dots in nanospheres. Nanoscale Dec 21 2012; 4 (24) 7760-7765.
  • 16 Troia A., Giovannozzi A., Amato G. Preparation of tunable silicon q-dots through ultrasound. Ultrason Sonochem. Apr 2009; 16 (04) 448-451.
  • 17 Wagner M.K., Li F., Li J., Li X.F., Le X.C. Use of quantum dots in the development of assays for cancer biomarkers. Anal Bioanal Chem Aug 2010; 397 (08) 3213-3224.
  • 18 Armstead A.L., Li B. Nanomedicine as an emerging approach against intracellular pathogens. Int J Nanomedicine 2011; 6: 3281-3293.
  • 19 Paul A., Das S., Das J., Samadder A., Khuda-Bukhsh A.R. Cytotoxicity and apoptotic signalling cascade induced by chelidonine-loaded PLGA nanoparticles in HepG2 cells in vitro and bioavailability of nano-chelidonine in mice in vivo. Toxicol Lett 2013; 222 Jul 11 (01) 10-22.
  • 20 Buzea C., Pacheco I.I., Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2007; 2 (04) MR17-71.
  • 21 Hopkins L.E., Patchin E.S., Chiu P.L., Brandenberger C., Smiley-Jewell S., Pinkerton K.E. Nose-to-brain transport of aerosolised quantum dots following acute exposure. Nanotoxicology 2014; 8 (08) Dec 885-893.
  • 22 Malam Y., Lim E.J., Seifalian A.M. Current trends in the application of nanoparticles in drug delivery. Curr Med Chem 2011; 18 (07) 1067-1078.
  • 23 Upadhyay R.P., Nayak C. Homeopathy emerging as nanomedicine. Int J High Dilution Res 2011; 10 (37) 299-310.
  • 24 Elia V., Ausanio G., Gentile F., Germano R., Napoli E., Niccoli M. Experimental evidence of stable water nanostructures in extremely dilute solutions, at standard pressure and temperature. Homeopathy 2014; 103 (01) 44-50.
  • 25 Stovbun S.V., Kiselev A.V., Zanin A.M. et al. Effects of physicochemical forms of phenazepam and Panavir on their action at ultra-low doses. Bull Exp Biol Med 2012; 153 (04) Aug 455-458.
  • 26 Demangeat J.L. NMR relaxation evidence for solute-induced nanosized superstructures in ultramolecular aqueous dilutions of silica-lactose. J Mol Liq 2010; 155: 71-79.
  • 27 Barve R., Chaughule R. Size-dependent in vivo/in vitro results of homoeopathic herbal extracts. J Nanostructure Chem 2013; 3: 18.
  • 28 Liu L., Randolph T.W., Carpenter J.F. Particles shed from syringe filters and their effects on agitation-induced protein aggregation. J Pharm Sci 2012; 101 (08) Aug 2952-2959.
  • 29 Demangeat J.L. Nanosized solvent superstructures in ultramolecular aqueous dilutions: twenty years' research using water proton NMR relaxation. Homeopathy 2013; 102 (02) Apr 87-105.
  • 30 Witt C.M., Ludtke R., Weisshuhn T.E., Quint P., Willich S.N. The role of trace elements in homeopathic preparations and the influence of container material, storage duration, and potentisation. Forsch Komplementarmed 2006; 13 (01) Feb 15-21.
  • 31 Shirali A.C., Look M., Du W. et al. Nanoparticle delivery of mycophenolic acid upregulates PD-L1 on dendritic cells to prolong murine allograft survival. Am J Transplant: Off J Am Soc Transpl Am Soc Transpl Surgeons 2011; 11 (12) Dec 2582-2592.
  • 32 Prakash D.J., Arulkumar S., Sabesan M. Effect of nanohypericum (Hypericum perforatum gold nanoparticles) treatment on restraint stress induced behavioral and biochemical alteration in male albino mice. Pharmacogn Res 2010; 2 (06) Nov 330-334.
  • 33 Ahmad Z., Sharma S., Khuller G.K. Chemotherapeutic evaluation of alginate nanoparticle-encapsulated azole antifungal and antitubercular drugs against murine tuberculosis. Nanomedicine 2007; 3 (03) Sep 239-243.
  • 34 Barua S., Yoo J.W., Kolhar P., Wakankar A., Gokarn Y.R., Mitragotri S. Particle shape enhances specificity of antibody-displaying nanoparticles. Proc Natl Acad Sci U S A 2013; 110 (09) Feb 26 3270-3275.
  • 35 Zhang H., He X., Zhang Z. et al. Nano-CeO2 exhibits adverse effects at environmental relevant concentrations. Environ Sci Technol 2011; 45 (08) Apr 15 3725-3730.
  • 36 Bar-Ilan O., Chuang C.C., Schwahn D.J. et al. TiO2 Nanoparticle Exposure and illumination during Zebrafish development: mortality at parts per billion concentrations. Environ Sci Technol 2013; 47 (09) May 7 4726-4733.
  • 37 Van Der Ploeg M.J., Handy R.D., Heckmann L.H., Van Der Hout A., Van Den Brink N.W. C(60) exposure induced tissue damage and gene expression alterations in the earthworm Lumbricus rubellus. Nanotoxicology 2013; 7 (04) 432-440.
  • 38 Malarczyk E., Pazdzioch-Czochra M., Graz M., Kochmanska-Rdest J., Jarosz-Wilkolazka A. Nonlinear changes in the activity of the oxygen-dependent demethylase system in Rhodococcus erythropolis cells in the presence of low and very low doses of formaldehyde. Nonlinear Biomed Phys 2011; 5 (01) 9.
  • 39 Wu Q., Nouara A., Li Y. et al. Comparison of toxicities from three metal oxide nanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans. Chemosphere 2013; 90 (03) Jan 1123-1131.
  • 40 Andersson-Willman B., Gehrmann U., Cansu Z. et al. Effects of subtoxic concentrations of TiO2 and ZnO nanoparticles on human lymphocytes, dendritic cells and exosome production. Toxicol Appl Pharmacol 2012; 264 (01) Oct 1 94-103.
  • 41 Panacek A., Kvitek L., Prucek R. et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 2006; 110 (33) Aug 24 16248-16253.
  • 42 Chikramane P.S., Kalita D., Suresh A.K., Kane S.G., Bellare J.R. Why extreme dilutions reach non-zero asymptotes: a nanoparticulate hypothesis based on froth flotation. Langmuir 2012; 28 (45) 15864-15875.
  • 43 Diallo A.K., Ornelas C., Salmon L., Ruiz Aranzaes J., Astruc D. “Homeopathic” catalytic activity and atom-leaching mechanism in Miyaura-Suzuki reactions under ambient conditions with precise dendrimer-stabilized Pd nanoparticles. Angew Chem Int Ed Engl 2007; 46 (45) 8644-8648.
  • 44 Deraedt C., Astruc D. “Homeopathic” palladium nanoparticle catalysis of cross carbon-carbon coupling reactions. Acc Chem Res 2014; 47 (02) 494-503.
  • 45 Blinova I., Niskanen J., Kajankari P. et al. Toxicity of two types of silver nanoparticles to aquatic crustaceans Daphnia magna and Thamnocephalus platyurus. Environ Sci Pollut Res Int 2013; 20 (05) May 3456-3463.
  • 46 Walkey C.D., Chan W.C. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 2012; 41 (07) Apr 7 2780-2799.
  • 47 Sur I., Cam D., Kahraman M., Baysal A., Culha M. Interaction of multi-functional silver nanoparticles with living cells. Nanotechnology 2010; 21 (17) Apr 30 175104.
  • 48 Chaikin Y., Kedem O., Raz J., Vaskevich A., Rubinstein I. Stabilization of metal nanoparticle films on glass surfaces using ultrathin silica coating. Anal Chem 2013; 85 (21) Oct 9 10022-10027.
  • 49 Yanagisawa R., Takano H., Inoue K.I., Koike E., Sadakane K., Ichinose T. Size effects of polystyrene nanoparticles on atopic dermatitislike skin lesions in NC/NGA mice. Int J Immunopathol Pharmacol 2010; 23 (01) Jan-Mar 131-141.
  • 50 Ye Y., Liu J., Xu J., Sun L., Chen M., Lan M. Nano-SiO2 induces apoptosis via activation of p53 and Bax mediated by oxidative stress in human hepatic cell line. Toxicol Vitro 2010; 24 (03) Apr 751-758.
  • 51 Albanese A., Tang P.S., Chan W.C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 2012; 14: 1-16.
  • 52 Walkey C.D., Olsen J.B., Guo H., Emili A., Chan W.C. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 2012; 134 (04) Feb 1 2139-2147.
  • 53 Creutzenberg O., Bellmann B., Korolewitz R. et al. Change in agglomeration status and toxicokinetic fate of various nanoparticles in vivo following lung exposure in rats. Inhal Toxicol 2012; 24 (12) Oct 821-830.
  • 54 Maiorano G., Sabella S., Sorce B. et al. Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response. ACS Nano 2010; 4 (12) Dec 28 7481-7491.
  • 55 Chang X., Duncan L.K., Jinschek J., Vikesland P.J. Alteration of nC60 in the presence of environmentally relevant carboxylates. Langmuir 2012; 28 (20) May 22 7622-7630.
  • 56 Chang X., Vikesland P.J. Uncontrolled Variability in the Extinction Spectra of C60 Nanoparticle Suspensions. Langmuir 2013; 29 (31) Jun 25 9685-9693.
  • 57 Pham K.N., Fullston D., Sagoe-Crentsil K. Surface modification for stability of nano-sized silica colloids. J Colloid Interface Sci 2007; 315 (01) Nov 1 123-127.
  • 58 Cartwright S. Pyridinium-N-phenolates as molecular probes of serially diluted and agitated solutions: preliminary results. 1st Homeopathic Research Institute International Homeopathy Research Conference. Cutting Edge Research in Homeopathy; May 31–June 2, 2013, Barcelona, Spain 2013.
  • 59 Marucco A., Turci F., O'Neill L., Byrne H.J., Fubini B., Fenoglio I. Hydroxyl density affects the interaction of fibrinogen with silica nanoparticles at physiological concentration. J Colloid Interface Sci 2014; 419 Apr 1 86-94.
  • 60 Fathi H., Kelly J.P., Vasquez V.R., Graeve O.A. Ionic concentration effects on reverse micelle size and stability: implications for the synthesis of nanoparticles. Langmuir 2012; 28 (25) /06/26 9267-9274.
  • 61 Kusaka T., Nakayama M., Nakamura K., Ishimiya M., Furusawa E., Ogasawara K. Effect of silica particle size on macrophage inflammatory responses. PLoS One 2014; 9 (03) e92634.
  • 62 Fedeli C., Segat D., Tavano R. et al. Variations of the corona HDL: albumin ratio determine distinct effects of amorphous SiO nanoparticles on monocytes and macrophages in serum. Nanomedicine (Lond) 2014; 9 (16) Mar 24 2481-2497.
  • 63 Coelho Moreira C.O., de Fatima Ferreira Borges da Costa J., Leal M.F. et al. Lymphocyte proliferation stimulated by activated Cebus apella macrophages treated with a complex homeopathic immune response modifiers. Homeopathy 2012; 101 (01) Jan 74-79.
  • 64 Burbano R.R., Leal M.F., da Costa J.B. et al. Lymphocyte proliferation stimulated by activated human macrophages treated with Canova. Homeopathy 2009; 98 (01) Jan 45-48.
  • 65 de Oliveira C.C., de Oliveira S.M., Godoy L.M., Gabardo J., Buchi Dde F. Canova, a Brazilian medical formulation, alters oxidative metabolism of mice macrophages. J Infect 2006; 52 (06) Jun 420-432.
  • 66 Pedalino C.M., Perazzo F.F., Carvalho J.C., Martinho K.S., Massoco Cde O., Bonamin L.V. Effect of Atropa belladonna and Echinacea angustifolia in homeopathic dilution on experimental peritonitis. Homeopathy 2004; 93 (04) Oct 193-198.
  • 67 Guimaraes F.S., Abud A.P., Oliveira S.M. et al. Stimulation of lymphocyte anti-melanoma activity by co-cultured macrophages activated by complex homeopathic medication. BMC Cancer 2009; 9: 293.
  • 68 Winter M., Beer H.D., Hornung V., Kramer U., Schins R.P., Forster I. Activation of the inflammasome by amorphous silica and TiO2 nanoparticles in murine dendritic cells. Nanotoxicology 2011; 5 (03) Sep 326-340.
  • 69 Ramachandran C., Nair P.K., Clement R.T., Melnick S.J. Investigation of cytokine expression in human leukocyte cultures with two immune-modulatory homeopathic preparations. J Altern Complement Med 2007; 13 (04) May 403-407.
  • 70 Gallo P.M., Gallucci S. The dendritic cell response to classic, emerging, and homeostatic danger signals. Implications for autoimmunity. Front Immunol 2013; 4: 138.
  • 71 Karatsoreos I.N., McEwen B.S. Psychobiological allostasis: resistance, resilience and vulnerability. Trends Cogn Sci 2011; 15 (12) Dec 576-584.
  • 72 Li J.K., Lin J.C., Liu H.C., Chang W.H. Cytokine release from osteoblasts in response to different intensities of pulsed electromagnetic field stimulation. Electromagn Biol Med 2007; 26 (03) 153-165.
  • 73 Ross C.L., Harrison B.S. Effect of time-varied magnetic field on inflammatory response in macrophage cell line RAW 264.7. Electromagn Biol Med 2013; 32 (01) 59-69.
  • 74 Lloyd S. Quantum coherence in biological systems. J Phys: Conf Ser . 2011. International Symposium “Nanoscience and Quantum Physics 2011”:012037.
  • 75 Dressler F., Akan O.B. A survey on bio-inspired networking. Comput Netw 2010; 54 (06) 4/29/ 881-900.
  • 76 Coffey D.S. Self-organization, complexity, and chaos: the new biology for medicine. Nat Med 1998; 4 (08) 882-885.
  • 77 Chen S.F., Colfen H., Antonietti M., Yu S.H. Ethanol assisted synthesis of pure and stable amorphous calcium carbonate nanoparticles. Chem Commun (Camb) 2013; 49 (83) Oct 25 9564-9566.
  • 78 Ju-Nam Y., Lead J.R. Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 2008; 400 (13) Aug 1 396-414.
  • 79 Hassan T.A., Rangari V.K., Rana R.K., Jeelani S. Sonochemical effect on size reduction of CaCO3 nanoparticles derived from waste eggshells. Ultrason Sonochemistry 9 2013; 20 (05) 1308-1315.
  • 80 Salavati-Niasari M., Javidi J. Sonochemical synthesis of silica and silica sulfuric acid nanoparticles from rice husk ash: a new and recyclable catalyst for the acetylation of alcohols and phenols under heterogeneous conditions. Comb Chem High Throughput Screen 2012; 15 (09) Nov 705-712.
  • 81 Salavati-Niasari M., Javidi J., Dadkhah M. Ball milling synthesis of silica nanoparticle from rice husk ash for drug delivery application. Comb Chem High Throughput Screen 2013; 16 (06) Aug 28 458-462.
  • 82 Merisko-Liversidge E., Liversidge G.G. Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Deliv Rev 2011; 63 (06) May 30 427-440.
  • 83 DeCastro C.L., Mitchell B.S. Nanoparticles from mechanical attrition. Baraton M.I. Synthesis, Functionalization, and Surface Treatment of Nanoparticles. 2002. American Scientific Publisher; Valencia, CA: 1-15.
  • 84 Caron V., Willart J.F., Lefort R., Derollez P., Danede F., Descamps M. Solid state amorphization kinetic of alpha lactose upon mechanical milling. Carbohydr Res 2011; 346 (16) Nov 29 2622-2628.
  • 85 Keck C.M., Muller R.H. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm 2006; 62 (01) Jan 3-16.
  • 86 Bhatte K.D., Fujita S., Arai M., Pandit A.B., Bhanage B.M. Ultrasound assisted additive free synthesis of nanocrystalline zinc oxide. Ultrason Sonochem. 2011; 18 (01) Jan 54-58.
  • 87 Tang C., Zhou T., Yang J. et al. Wet-grinding assisted ultrasonic dispersion of pristine multi-walled carbon nanotubes (MWCNTs) in chitosan solution. Colloids Surf B Biointerfaces 2011; 86 (01) Aug 1 189-197.
  • 88 Bell I.R., Sarter B., Standish L.J., Banerji P., Banerji P. Low doses of traditional nanophytomedicines for clinical treatment: manufacturing processes and nonlinear response patterns. J Nanosci Nanotechnol 2014; 14: 1-17.
  • 89 Kiel S., Grinberg O., Perkas N., Charmet J., Kepner H., Gedanken A. Forming nanoparticles of water-soluble ionic molecules and embedding them into polymer and glass substrates. Beilstein J Nanotechnol 2012; 3: 267-276.
  • 90 Ricco R., Meneghello A., Enrichi F. Signal enhancement in DNA microarray using dye doped silica nanoparticles: application to human papilloma virus (HPV) detection. Biosens Bioelectron 2011; 26 (05) Jan 15 2761-2765.
  • 91 Napierska D., Rabolli V., Thomassen L.C. et al. Oxidative stress induced by pure and iron-doped amorphous silica nanoparticles in subtoxic conditions. Chem Res Toxicol 2012; 25 (04) Apr 16 828-837.
  • 92 Christen V., Fent K. Silica nanoparticles and silver-doped silica nanoparticles induce endoplasmatic reticulum stress response and alter cytochrome P4501A activity. Chemosphere 2012; 87 (04) Apr 423-434.
  • 93 Bae S.W., Cho M.S., Hur S.S. et al. A doubly signal-amplified DNA detection method based on pre-complexed [Ru(bpy)3]2+-doped silica nanoparticles. Chemistry 2010; 16 (38) Oct 11 11572-11575.
  • 94 Bradley D.A., Hugtenburg R.P., Nisbet A. et al. Review of doped silica glass optical fibre: their TL properties and potential applications in radiation therapy dosimetry. Appl Radiat Isot 2012; 71 (01) Dec 2-11.
  • 95 Das S., Das J., Samadder A., Bhattacharyya S., Das D., Khuda-Bukhsh A.R. Biosynthesized silver nanoparticles by ethanolic extracts of Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis induce differential cytotoxicity through G2/M arrest in A375 cells. Colloids Surf B: Biointerfaces 2013; 101: 325-336.
  • 96 Perry C.C., Keeling-Tucker T. Crystalline silica prepared at room temperature from aqueous solution in the presence of intrasilica bioextracts. Chem Commun (Camb) 1998; 1998 (23) 2587-2588.
  • 97 MubarakAli D., Thajuddin N., Jeganathan K., Gunasekaran M. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf B Biointerfaces 2011; 85 (02) Jul 1 360-365.
  • 98 Belton D.J., Deschaume O., Perry C.C. An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances. FEBS J 2012; 279 (10) May 1710-1720.
  • 99 Zhai C., Lu Q., Chen X., Peng Y., Chen L., Du S. Molecularly imprinted layer-coated silica nanoparticles toward highly selective separation of active diosgenin from Dioscorea nipponica Makino. J Chromatogr A 2009; 1216 (12) Mar 20 2254-2262.
  • 100 Pandey S., Thakur M., Shah R., Oza G., Mewada A., Sharon M. A comparative study of economical separation and aggregation properties of biologically capped and thiol functionalized gold nanoparticles: selecting the eco-friendly trojan horses for biological applications. Colloids Surf B Biointerfaces 2013; 109 Sep 1 25-31.
  • 101 Philip D. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim Acta A Mol Biomol Spectrosc 2009; 73 (02) Jul 15 374-381.
  • 102 Cumbo A., Lorber B., Corvini P.F., Meier W., Shahgaldian P. A synthetic nanomaterial for virus recognition produced by surface imprinting. Nat Commun 2013; 4: 1503.
  • 103 Liu B., Yao Y., Che S. Template-assisted self-assembly: alignment, placement, and arrangement of two-dimensional mesostructured DNA-silica platelets. Angew Chem Int Ed Engl 2013; 52 (52) Dec 23 14186-14190.
  • 104 Lofgreen J.E., Moudrakovski I.L., Ozin G.A. Molecularly imprinted mesoporous organosilica. ACS Nano 2011; 5 (03) Mar 22 2277-2287.
  • 105 Zhu R., Zhao W., Zhai M. et al. Molecularly imprinted layer-coated silica nanoparticles for selective solid-phase extraction of bisphenol A from chemical cleansing and cosmetics samples. Anal Chim Acta 2010; 658 (02) Jan 25 209-216.
  • 106 Kim E.J., Chung B.H., Lee H.J. Parts per trillion detection of Ni(II) ions by nanoparticle-enhanced surface plasmon resonance. Anal Chem 2012; 84 (22) Nov 20 10091-10096.
  • 107 Peng C., Duan X., Song S., Xue F. Parts per trillion detection of 7-aminonitrazepam by nano-enhanced ELISA. Int J Mol Sci 2013; 14 (10) 19474-19483.
  • 108 Czerlinski G., Ypma T. The targets of information-carrying nanodomains. J Nanosci Nanotechnol 2012; 12 (03) Mar 2239-2247.
  • 109 Fatnassi M., Tourne-Peteilh C., Mineva T. et al. Drug nano-domains in spray-dried ibuprofen-silica microspheres. Phys Chem Chem Phys 2012; 14 (35) Sep 21 12285-12294.
  • 110 Anraku Y., Kishimura A., Oba M., Yamasaki Y., Kataoka K. Spontaneous formation of nanosized unilamellar polyion complex vesicles with tunable size and properties. J Am Chem Soc 2010; 132 (05) Feb 10 1631-1636.
  • 111 Menon D., Basanth A., Retnakumari A., Manzoor K., Nair S.V. Green synthesis of biocompatible gold nanocrystals with tunable surface plasmon resonance using garlic phytochemicals. J Biomed Nanotechnol 2012; 8 (06) Dec 901-911.
  • 112 Perry C.C., Keeling-Tucker T. Model studies of colloidal silica precipitation using biosilica extracts from Equisetum telmateia. Colloid Polym Sci 2003; 281 (07) Jul 01 652-664.
  • 113 Rowe D.J., Jeong J.S., Mkhoyan K.A., Kortshagen U.R. Phosphorus-doped silicon nanocrystals exhibiting mid-infrared localized surface plasmon resonance. Nano Lett 2013; 13 (03) Mar 13 1317-1322.
  • 114 Mudunkotuwa I.A., Grassian V.H. The devil is in the details (or the surface): impact of surface structure and surface energetics on understanding the behavior of nanomaterials in the environment. J Environ Monit 2011; 13 (05) May 1135-1144.
  • 115 Chang X., Vikesland P.J. Effects of dilution on the properties of nC. Environ Pollut 2013; 181C Jun 26 51-59.
  • 116 Arvela R.K., Leadbeater N.E., Sangi M.S., Williams V.A., Granados P., Singer R.D. A Reassessment of the Transition-Metal Free Suzuki-Type Coupling Methodology. J Org Chem 2005; 70 (01) 01/01 161-168 2004.
  • 117 Nano.gov What's so special about the nanoscale?. 2013. http://www.nano.gov/nanotech-101/special Accessed 10/12/13.
  • 118 Cao G., Wang Y. Nanostructures and nanomaterials: synthesis, properties, and applications. 2nd edn. 2011. World Scientific; New Jersey.:
  • 119 Yoo J.W., Yun D.S., Kim H.J. Influence of reaction parameters on size and shape of silica nanoparticles. J Nanosci Nanotechnol 2006; 6 (11) Nov 3343-3346.
  • 120 Niwa T., Danjo K. Design of self-dispersible dry nanosuspension through wet milling and spray freeze-drying for poorly water-soluble drugs. Eur J Pharm Sci 2013; 50 (03) (04) Jul 29 272-281.
  • 121 Niwa T., Miura S., Danjo K. Design of dry nanosuspension with highly spontaneous dispersible characteristics to develop solubilized formulation for poorly water-soluble drugs. Pharm Res 2011; 28 (09) Sep 2339-2349.
  • 122 Genina N., Raikkonen H., Heinamaki J., Veski P., Yliruusi J. Nano-coating of beta-galactosidase onto the surface of lactose by using an ultrasound-assisted technique. AAPS PharmSciTech 2010; 11 (02) Jun 959-965.
  • 123 Tavares Cardoso M.A., Talebi M., Soares P.A., Yurteri C.U., van Ommen J.R. Functionalization of lactose as a biological carrier for bovine serum albumin by electrospraying. Int J Pharm 2011; 414 (01/02) Jul 29 1-5.
  • 124 Baca H.K., Carnes E.C., Ashley C.E. et al. Cell-directed-assembly: directing the formation of nano/bio interfaces and architectures with living cells. Biochim Biophys Acta 2011; 1810 (03) Mar 259-267.
  • 125 Kaehr B., Townson J.L., Kalinich R.M. et al. Cellular complexity captured in durable silica biocomposites. Proc Natl Acad Sci U. S. A 2012; 109 (43) Oct 8 17336-17341.
  • 126 Hahnemann S. Organon of the medical art. 6th edn. 1843. Birdcage Books; Redmond, WA.:
  • 127 Shi Z., Huang X., Liu B., Tao H., Cai Y., Tang R. Biological response of osteosarcoma cells to size-controlled nanostructured hydroxyapatite. J Biomater Appl 2010; 25 (01) Jul 19-37.
  • 128 Biswas A., Gomes A., Sengupta J. et al. Nanoparticle-conjugated animal venom-toxins and their possible therapeutic potential. J Venom Res 2012; 3: 15-21.
  • 129 Zhu M., Li Y., Shi J., Feng W., Nie G., Zhao Y. Exosomes as extrapulmonary signaling conveyors for nanoparticle-induced systemic immune activation. Small 2012; 8 (03) Feb 6 404-412.
  • 130 Zhu M., Tian X., Song X. et al. Nanoparticle-induced exosomes target antigen-presenting cells to initiate Th1-type immune activation. Small 2012; 8 (18) Jun 6 2841-2848.
  • 131 Al-Sadoon M.K., Abdel-Maksoud M.A., Rabah D.M., Badr G. Induction of apoptosis and growth arrest in human breast carcinoma cells by a snake (Walterinnesia aegyptia) venom combined with silica nanoparticles: crosstalk between Bcl2 and Caspase 3. Cell Physiol Biochem 2012; 30 (03) 653-665.
  • 132 Sayed D., Al-Sadoon M.K., Badr G. Silica nanoparticles sensitize human multiple myeloma cells to snake (Walterinnesia aegyptia) venom-induced apoptosis and growth arrest. Oxidative Med Cell Longev . 2012. 2012:386286.
  • 133 Al-Sadoon M.K., Rabah D.M., Badr G. Enhanced anticancer efficacy of snake venom combined with silica nanoparticles in a murine model of human multiple myeloma: molecular targets for cell cycle arrest and apoptosis induction. Cell Immunol 2013; 284 (01/02) Aug 6 129-138.
  • 134 Mahony D., Cavallaro A.S., Stahr F., Mahony T.J., Qiao S.Z., Mitter N. Mesoporous silica nanoparticles act as a self-adjuvant for ovalbumin model antigen in mice. Small 2013; 9 (18) Apr 26 3138-3146.
  • 135 Mody K.T., Popat A., Mahony D., Cavallaro A.S., Yu C., Mitter N. Mesoporous silica nanoparticles as antigen carriers and adjuvants for vaccine delivery. Nanoscale 2013; 5 (12) Jun 21 5167-5179.
  • 136 Bhattacharyya S.S., Mandal S.K., Biswas R. et al. In vitro studies demonstrate anticancer activity of an alkaloid of the plant Gelsemium sempervirens. Exp Biol Med (Maywood) 2008; 233 (12) Dec 1591-1601.
  • 137 Baier G., Costa C., Zeller A. et al. BSA adsorption on differently charged polystyrene nanoparticles using isothermal titration calorimetry and the influence on cellular uptake. Macromol Biosci 2011; 11 (05) May 12 628-638.
  • 138 Herman D., Walz J.Y. Stabilization of weakly charged microparticles using highly charged nanoparticles. Langmuir 2013; 29 (20) May 21 5982-5994.
  • 139 Chen H.C., Sun B., Tran K.K., Shen H. Effects of particle size on toll-like receptor 9-mediated cytokine profiles. Biomaterials 2011; 32 (06) Feb 1731-1737.
  • 140 Stano A., Nembrini C., Swartz M.A., Hubbell J.A., Simeoni E. Nanoparticle size influences the magnitude and quality of mucosal immune responses after intranasal immunization. Vaccine 2012; 30 (52) Dec 14 7541-7546.
  • 141 Araujo E.A., Andrade N.J., da Silva L.H. et al. Antimicrobial effects of silver nanoparticles against bacterial cells adhered to stainless steel surfaces. J Food Prot 2012; 75 (04) Apr 701-705.
  • 142 Soloviev M., Gedanken A. Coating a stainless steel plate with silver nanoparticles by the sonochemical method. Ultrason Sonochem 2011; 18 (01) Jan 356-362.
  • 143 Roduner E. Size matters: why nanomaterials are different. Chem Soc Rev 2006; 35 (07) 583-592.
  • 144 Fisher P. Local, entangled or both?. Homeopathy 2013; 102 (02) Apr 85-86.
  • 145 Juve V., Cardinal M.F., Lombardi A. et al. Size-dependent surface plasmon resonance broadening in nonspherical nanoparticles: single gold nanorods. Nano Lett 2013; 13 (05) May 8 2234-2240.
  • 146 Chou L.W., Shin N., Sivaram S.V., Filler M.A. Tunable mid-infrared localized surface plasmon resonances in silicon nanowires. J Am Chem Soc 2012; 134 (39) Oct 3 16155-16158.
  • 147 Bell I.R., Sarter B., Koithan M., Standish L.J., Banerji P., Banerji P. Nonlinear response amplification mechanisms for low doses of natural product nanomedicines: dynamical interactions with the recipient complex adaptive system. J nanomedicine Nanotechnol 2013; 4: 179.
  • 148 Verhoef M., Koithan M., Bell I.R., Ives J., Jonas W. Whole complementary and alternative medical systems and complexity: creating collaborative relationships. Forschende Komplementarmedizin und Klassische Naturheilkunde 2012; 19 (01) DOI: 10.1159/000335179.
  • 149 Koithan M., Bell I.R., Niemeyer K., Pincus D. A complex systems science perspective for whole systems of CAM research. Forschende Komplementarmedizin und Klassische Naturheilkunde 2012; 19 (01) 7-14.
  • 150 Bellavite P., Olioso D., Marzotto M., Moratti E., Conforti A. A dynamic network model of the similia principle. Complementary Ther Med 2013; 21 (06) 750-761.
  • 151 Bellavite P. Complexity science and homeopathy: a synthetic overview. Homeopathy: J Fac Homeopathy 2003; 92 (04) 203-212.
  • 152 Pincus D., Metten A. Nonlinear dynamics in biopsychosocial resilience. Nonlinear Dyn Psychol Life Sci 2010; 14 (04) 353-380.
  • 153 Farkas I.J., Korcsmaros T., Kovacs I.A. et al. Network-based tools for the identification of novel drug targets. Sci Signal 2011; 4 (173) pt3.
  • 154 Soti C., Pal C., Papp B., Csermely P. Molecular chaperones as regulatory elements of cellular networks. Curr Opin Cell Biol 2005; 17 (02) Apr 210-215.
  • 155 Szalay M.S., Kovacs I.A., Korcsmaros T., Bode C., Csermely P. Stress-induced rearrangements of cellular networks: consequences for protection and drug design. FEBS Lett 2007; 581 (19) Jul 31 3675-3680.
  • 156 Mihalik A., Csermely P. Heat shock partially dissociates the overlapping modules of the yeast protein-protein interaction network: a systems level model of adaptation. PLoS Comput Biol 2011; 7 (10) Oct e1002187.
  • 157 Csermely P., Agoston V., Pongor S. The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol Sci 2005; 26 (04) Apr 178-182.
  • 158 Hyland M.E., Lewith G.T. Oscillatory effects in a homeopathic clinical trial: an explanation using complexity theory, and implications for clinical practice. Homeopathy 2002; 91 (03) 145-149.
  • 159 Bell I.R., Howerter A., Jackson N., Aickin M., Bootzin R.R. Nonlinear dynamical systems effects of homeopathic remedies on multiscale entropy and correlation dimension of slow wave sleep EEG in young adults with histories of coffee-induced insomnia. Homeopathy 2012; 101 (03) 182-192.
  • 160 Baumgartner S., Doesburg P., Scherr C., Andersen J.O. Development of a biocrystallisation assay for examining effects of homeopathic preparations using cress seedlings. Evid Based Complement Altern Med 2012. 2012:125945.
  • 161 Baumgartner S. The State of Basic Research on Homeopathy. Witt C., Albrecht H. New Directions in Homeopathy Research. 2009. KVC Verlag; Essen, Germany: 107-130.
  • 162 Naviaux R.K. Metabolic features of the cell danger response. Mitochondrion 2014; 16: 7-17.
  • 163 Endler P.C., Pongratz W., Smith C.W., Schulte J. Non-molecular information transfer from thyroxine to frogs with regard to homeopathic toxicology. Veterinary & Hum Toxicol 1995; 37 (03) 259-260.
  • 164 Lenger K., Bajpai R.P., Drexel M. Delayed luminescence of high homeopathic potencies on sugar globuli. Homeopathy 2008; 97 (03) Jul 134-140.
  • 165 Lenger K., Bajpai R.P., Spielmann M. Identification of unknown homeopathic remedies by delayed luminescence. Cell Biochem Biophys 2014; 68 (02) 321-334.
  • 166 Weber S., Endler P.C., Welles S.U. et al. The effect of homeopathically prepared thyroxine on highland frogs: influence of electromagnetic fields. Homeopathy 2008; 97 (01) 3-9.
  • 167 Klein S.D., Sandig A., Baumgartner S., Wolf U. Differences in median ultraviolet light transmissions of serial homeopathic dilutions of copper sulfate, Hypericum perforatum, and sulfur. Evid Based Complement Altern Med 2013; 2013: 370609.
  • 168 Dietert R.R. Fractal immunology and immune patterning: potential tools for immune protection and optimization. J Immunotoxicol 2011; 8 (02) Jun 101-110.
  • 169 Hoppener C., Lapin Z.J., Bharadwaj P., Novotny L. Self-similar gold-nanoparticle antennas for a cascaded enhancement of the optical field. Phys Rev Lett 2012; 109 (01) Jul 6 017402.
  • 170 Song C., Havlin S., Makse H.A. Self-similarity of complex networks. 2005; Nature 433: 392-395.
  • 171 Dorn G.W. MicroRNAs and the butterfly effect. Cell Cycle 2013; 2nd 12 Mar 1 (05) 707-708.
  • 172 Lee H.C., Yang C.W., Chen C.Y., Au L.C. Single point mutation of microRNA may cause butterfly effect on alteration of global gene expression. Biochem Biophys Res Commun 2011; 404 (04) Jan 28 1065-1069.
  • 173 Vasquez A., Dobrin R., Sergi D., Eckmann J.P., Oltvai Z.N., Barabasi A.L. The topological relationship between the large-scale attributes and local interaction patterns of complex networks. Proc Natl Acad Sci U S A 2004; 101 (52) 17940-17945.
  • 174 Torres J.L., Ruiz M.A.G. Stochastic resonance and the homeopathic effect. Br Homoeopath J 1996; 85 (03) 134-140.
  • 175 Karig D.K., Siuti P., Dar R.D., Retterer S.T., Doktycz M.J., Simpson M.L. Model for biological communication in a nanofabricated cell-mimic driven by stochastic resonance. Nano Commun Netw 2011; 2 (01) Mar 39-49.
  • 176 Moss F., Ward L.M., Sannita W.G. Stochastic resonance and sensory information processing: a tutorial and review of application. Clin Neurophysiol 2004; 115 (02) Feb 267-281.
  • 177 McDonnell M.D., Ward L.M. The benefits of noise in neural systems: bridging theory and experiment. Nat Rev Neurosci 2011; 12 (07) Jul 415-426.
  • 178 Pinamonti G., Marro J., Torres J.J. Stochastic resonance crossovers in complex networks. PLoS One 2012; 7 (12) e51170.
  • 179 Cervera J., Manzanares J.A., Mafe S. Reliable signal processing using parallel arrays of non-identical nanostructures and stochastic resonance. Nanoscale 2010; 2 (06) Jun 1033-1038.
  • 180 Cervera J., Manzanares J.A., Mafe S. Sub-threshold signal processing in arrays of non-identical nanostructures. Nanotechnology 2011; 22 (43) Oct 28 435201.
  • 181 Wiesenfeld K., Moss M. Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 1995; 373 (05) 33-36.
  • 182 Badzey R.L., Mohanty P. Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance. Nature 2005; 437 7061 Oct 13 995-998.
  • 183 Mejias J.F., Torres J.J. Emergence of resonances in neural systems: the interplay between adaptive threshold and short-term synaptic plasticity. PLoS One 2011; 6 (03) e17255.
  • 184 Nikitin A., Stocks N.G., Morse R.P. Enhanced information transmission with signal-dependent noise in an array of nonlinear elements. Phys Rev E Stat Nonlin Soft Matter Phys 2007; 75 (02) Pt 1 Feb 021121.
  • 185 Poccia N., Ansuini A., Bianconi A. Far from equilibrium percolation, stochastic and shape resonances in the physics of life. Int J Mol Sci 2011; 12 (10) 6810-6833.
  • 186 Viola L., Fortunato E.M., Lloyd S., Tseng C., Cory D.G. Stochastic resonance and nonlinear response using NMR spectroscopy. Phys Rev Lett 2000; 84 (24) Jun 12 5466-5469.
  • 187 McDonnell M.D. Information capacity of stochastic pooling networks is achieved by discrete inputs. Phys Rev E Stat Nonlin Soft Matter Phys 2009; 79 (04) Pt 1 Apr 041107.
  • 188 Joshi A. Stochastic resonance in a double quantum dot system. Phys Rev E Stat Nonlin Soft Matter Phys 2008; 77 (02) Pt 1 Feb 020104.
  • 189 Hanggi P., Inchiosa M.E., Fogliatti D., Bulsara A.R. Nonlinear stochastic resonance: the saga of anomalous output-input gain. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top 2000; 62 5 Pt A Nov 6155-6163.
  • 190 Savage K.J., Hawkeye M.M., Esteban R., Borisov A.G., Aizpurua J., Baumberg J.J. Revealing the quantum regime in tunnelling plasmonics. Nature 2012; 491 7425 Nov 22 574-577.
  • 191 Walach H. Entanglement model of homeopathy as an example of generalised entanglement predicted by weak quantum theory. Forschende Komplementarmedizin/Res Complementary Med 2003; 10 (04) 192-200.
  • 192 Milgrom L.R. Conspicuous by its absence: the Memory of Water, macro-entanglement, and the possibility of homeopathy. Homeopathy 2007; 96 (03) Jul 209-219.
  • 193 Arani R., Bono I., Del Giudice E., Preparata G. QED coherence and the thermodynamics of water. Int J Mod Phys B 1995; 9 (15) 1813-1841.
  • 194 Del Giudice E., Doglia S., Milani M., Vitiello G. Structures, correlations, and electromagnetic interactions in living matter: theory and applications. Frohlich H. Biological Coherence and Response to External Stimuli. 1988. Springer-Verlag; Berlin: 49.
  • 195 Bischof M., Del Giudice E. Communication and the emergence of collective behavior in living organisms: a quantum approach. Mol Biol Int 2013. 2013:987549.
  • 196 Rey L. Can low-temperature thermoluminescence cast light on the nature of ultra-high dilutions?. Homeopathy 2007; 96 (03) 170-174.
  • 197 Grifoni M., Hartmann L., Berchtold S., Hanggi P. Quantum tunneling and stochastic resonance. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top 1996; 53 (06) Jun 5890-5898.
  • 198 Soti C., Csermely P. Aging cellular networks: chaperones as major participants. Exp Gerontol 2007; 42 (01) (02) Jan-Feb 113-119.
  • 199 Sarrafchi A., Odhammer A.M., Hernandez Salazar L.T., Laska M. Olfactory sensitivity for six predator odorants in CD-1 mice, human subjects, and spider monkeys. PLoS One 2013; 8 (11) e80621.
  • 200 Bahar S., Moss F. Stochastic resonance and synchronization in the crayfish caudal photoreceptor. Math Biosci 2004; 188 Mar-Apr 81-97.
  • 201 Wang C., Yi M., Yang K., Yang L. Time delay induced transition of gene switch and stochastic resonance in a genetic transcriptional regulatory model. BMC Syst Biol 2012; 6 Jul 16 (01) S9.
  • 202 Ribeiro A.S. Stochastic and delayed stochastic models of gene expression and regulation. Math Biosci 2010; 223 (01) Jan 1-11.
  • 203 Bigagli E., Luceri C., Bernardini S., Dei A., Filippini A., Dolara P. Exploring the effects of homeopathic Apis mellifica preparations on human gene expression profiles. Homeopathy 2014; 103 (02) Apr 127-132.
  • 204 Das D., De A., Dutta S., Biswas R., Boujedaini N., Khuda-Bukhsh A.R. Potentized homeopathic drug Arsenicum Album 30C positively modulates protein biomarkers and gene expressions in Saccharomyces cerevisae exposed to arsenate. Zhong Xi Yi Jie He Xue Bao 2011; 9 (07) Jul 752-760.
  • 205 Khuda-Bukhsh A.R., De A., Das D., Dutta S., Boujedaini N. Analysis of the capability of ultra-highly diluted glucose to increase glucose uptake in arsenite-stressed bacteria Escherichia coli. Zhong Xi Yi Jie He Xue Bao 2011; 9 (08) Aug 901-912.
  • 206 Marzotto M., Olioso D., Brizzi M., Tononi P., Cristofoletti M., Bellavite P. Extreme sensitivity of gene expression in human SH-SY5Y neurocytes to ultra-low doses of Gelsemium sempervirens. BMC Complement Altern Med 2014; 14: 104.
  • 207 Park E.J., Park K. Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol Lett 2009; 184 (01) Jan 10 18-25.
  • 208 Hong S.C., Lee J.H., Lee J. et al. Subtle cytotoxicity and genotoxicity differences in superparamagnetic iron oxide nanoparticles coated with various functional groups. Int J Nanomedicine 2011; 6: 3219-3231.
  • 209 Kim J.A., Aberg C., de Carcer G., Malumbres M., Salvati A., Dawson K.A. Low dose of amino-modified nanoparticles induces cell cycle arrest. ACS Nano 2013; 7 (09) Aug 19 7483-7494.
  • 210 Bourdineaud J.P., Rossignol R., Brethes D. Zebrafish: a model animal for analyzing the impact of environmental pollutants on muscle and brain mitochondrial bioenergetics. Int J Biochem Cell Biol 2013; 45 (01) Jan 16-22.
  • 211 Demirovic D., Rattan S.I. Establishing cellular stress response profiles as biomarkers of homeodynamics, health and hormesis. Exp Gerontol 2013; 48 (01) Jan 94-98.
  • 212 Khuda-Bukhsh A.R., Bhattacharyya S.S., Paul S., Dutta S., Boujedaini N., Belon P. Modulation of signal proteins: a plausible mechanism to explain how a potentized drug secale cor 30c diluted beyond Avogadro's limit combats skin papilloma in mice. Evid Based Complement Altern Med 2011. Jul 16 2011:286320.
  • 213 Frenkel M., Mishra B.M., Sen S. et al. Cytotoxic effects of ultra-diluted remedies on breast cancer cells. Int J Oncol 2010; 36 (02) Feb 395-403.
  • 214 de Oliveira C.C., de Oliveira S.M., Goes V.M., Probst C.M., Krieger M.A., Buchi Dde F. Gene expression profiling of macrophages following mice treatment with an immunomodulator medication. J Cell Biochem 2008; 104 (04) Jul 1 1364-1377.
  • 215 Juster R.P., McEwen B.S., Lupien S.J. Allostatic load biomarkers of chronic stress and impact on health and cognition. Neurosci Biobehav Rev 2010; 35 (01) Sep 2-16.
  • 216 Antelman S.M. Time-dependent sensitization in animals: a possible model of multiple chemical sensitivity in humans. Toxicol Industrial Health 1994; 10 (04) (05) 335-342.
  • 217 Caggiula A.R., Antelman S.M., Kucinski B.J. et al. Oscillatory-sensitization model of repeated drug exposure: cocaine's effects on shock-induced hypoalgesia. Prog Neuro-Psychopharmacology Biol Psychiatry 1998; 22 (03) 511-521.
  • 218 Antelman S.M., Caggiula A.R., Kocan D. et al. One experience with 'lower' or 'higher' intensity stressors, respectively enhances or diminishes responsiveness to haloperidol weeks later: implications for understanding drug variability. Brain Res 1991; 566 (01) (02) 276-283.
  • 219 Antelman S.M., Eichler A.J., Black C.A., Kocan D. Interchangeability of stress and amphetamine in sensitization. Science 1980; 207 4428 329-331.
  • 220 Antelman S.M., Caggiula A.R., Gershon S. et al. Stressor-induced oscillation. A possible model of the bidirectional symptoms in PTSD. Ann N. Y Acad Sci 1997; 821: 296-304.
  • 221 Antelman S.M., Caggiula A.R. Oscillation follows drug sensitization: implications. Crit Rev Neurobiol 1996; 10 (01) 101-117.
  • 222 Audet M.C., Jacobson-Pick S., Wann B.P., Anisman H. Social defeat promotes specific cytokine variations within the prefrontal cortex upon subsequent aggressive or endotoxin challenges. Brain Behav Immun 2011; 25 (06) Aug 1197-1205.
  • 223 Moeller-Bertram T., Strigo I.A., Simmons A.N., Schilling J.M., Patel P., Baker D.G. Evidence for acute central sensitization to prolonged experimental pain in posttraumatic stress disorder. Pain Med 2014; 15 (05) Apr 16 762-771.
  • 224 Antelman S.M., Levine J., Gershon S. Time-dependent sensitization: the odyssey of a scientific heresy from the laboratory to the door of the clinic. Mol Psychiatry 2000; 5 (04) 350-356.
  • 225 Mayer T.G., Neblett R., Cohen H. et al. The development and psychometric validation of the central sensitization inventory. Pain Pract 2012; 12 (04) Apr 276-285.
  • 226 Kindler L.L., Bennett R.M., Jones K.D. Central sensitivity syndromes: mounting pathophysiologic evidence to link fibromyalgia with other common chronic pain disorders. Pain Manag Nurs 2011; 12 (01) Mar 15-24.
  • 227 Bell I.R., Baldwin C.M., Schwartz G.E. Sensitization studies in chemically intolerant individuals: implications for individual difference research. Ann N. Y Acad Sci 2001; 933: 38-47.
  • 228 Bell I.R., Howerter A., Jackson N., Brooks A.J., Schwartz G.E. Multi-week resting EEG cordance change patterns from repeated olfactory activation with two constitutionally-salient homeopathic remedies in healthy young adults. J Altern Complementary Med 2012; 18 (05) 445-453.
  • 229 Bell I.R., Brooks A.J., Howerter A., Jackson N., Schwartz G.E. Short-term effects of repeated olfactory administration of homeopathic Sulphur or Pulsatilla on electroencephalographic alpha power in healthy young adults. Homeopathy 2011; 100 (04) 203-211.
  • 230 Bell I.R., Lewis D.A., Lewis S.E. et al. EEG alpha sensitization in individualized homeopathic treatment of fibromyalgia. Int J Neurosci 2004; 2nd 114 (09) 1195-1220.
  • 231 Bell I.R., Brooks A.J., Howerter A., Jackson N., Schwartz G.E. Acute electroencephalographic effects from repeated olfactory administration of homeopathic remedies in individuals with self-reported chemical sensitivity. Altern Ther Health & Med 2013; 19 (01) 46-57.
  • 232 Brookes J.C., Horsfield A.P., Stoneham A.M. The swipe card model of odorant recognition. Sensors (Basel) 2012; 12 (11) 15709-15749.
  • 233 Iavicoli I., Calabrese E.J., Nascarella M.A. Exposure to nanoparticles and hormesis. Dose Response 2010; 8 (04) 501-517.
  • 234 Nascarella M.A., Calabrese E.J. A method to evaluate hormesis in nanoparticle dose-responses. Dose Response 2012; 10 (03) 344-354.
  • 235 Wiegant F.A., Prins H.A., Van Wijk R. Postconditioning hormesis put in perspective: an overview of experimental and clinical studies. Dose Response 2011; 9 (02) 209-224.
  • 236 Van Wijk R., Wiegant F.A. Postconditioning hormesis and the similia principle. Front Biosci (Elite Ed) 2011; 3: 1128-1138.
  • 237 Van Wijk R., Wiegant F.A. Postconditioning hormesis and the homeopathic Similia principle: molecular aspects. Hum Exp Toxicol 2010; 29 (07) Jul 561-565.
  • 238 Calabrese E.J. Hormetic mechanisms. Crit Rev Toxicol 2013; 43 (07) 580-606.
  • 239 Danese A., McEwen B.S. Adverse childhood experiences, allostasis, allostatic load, and age-related disease. Physiol Behav 2012; 106 (01) Apr 12 29-39.
  • 240 Calabrese E.J., Mattson M.P. Hormesis provides a generalized quantitative estimate of biological plasticity. J Cell Commun Signal 2011; 5 (01) Mar 25-38.
  • 241 Rai R., Singh H. Stochastic resonance without an external periodic drive in a simple prey-predator model. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top 2000; 62 (06) Pt B Dec 8804-8807.
  • 242 Xu S., Hartvickson S., Zhao J.X. Increasing surface area of silica nanoparticles with a rough surface. ACS Appl Mater Interfaces 2011; 3 (06) Jun 1865-1872.
  • 243 Rabolli V., Thomassen L.C., Princen C. et al. Influence of size, surface area and microporosity on the in vitro cytotoxic activity of amorphous silica nanoparticles in different cell types. Nanotoxicology 2010; 4 (03) Sep 307-318.
  • 244 Chu Z., Zhang S., Zhang B. et al. Unambiguous observation of shape effects on cellular fate of nanoparticles. Sci Rep 2014; 4: 4495.
  • 245 Niu Y., Yu M., Hartono S.B. et al. Nanoparticles mimicking viral surface topography for enhanced cellular delivery. Adv Mater 2013; 25 (43) Nov 20 6233-6237.
  • 246 George S., Lin S., Ji Z. et al. Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano 2012; 6 (05) May 22 3745-3759.
  • 247 Venard C., Boujedaini N., Mensah-Nyagan A.G., Patte-Mensah C. Comparative analysis of Gelsemine and Gelsemium sempervirens activity on neurosteroid allopregnanolone formation in the spinal cord and limbic system. Evid Based Complement Altern Med 2011; 2011: 407617.
  • 248 Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J 2012; 14 (02) Jun 282-295.
  • 249 Laurent S., Burtea C., Thirifays C., Hafeli U.O., Mahmoudi M. Crucial ignored parameters on nanotoxicology: the importance of toxicity assay modifications and “cell vision”. PLoS One 2012; 7 (01) e29997.
  • 250 Borys N.J., Shafran E., Lupton J.M. Surface plasmon delocalization in silver nanoparticle aggregates revealed by subdiffraction supercontinuum hot spots. Sci Rep 2013; 3: 2090.