Homeopathy 2015; 104(01): 15-23
DOI: 10.1016/j.homp.2014.05.002
Original Paper
Copyright © The Faculty of Homeopathy 2014

Effects of homeopathic Anax imperator on behavioural and pain models in mice

Oguz Mutlu
1   Department of Pharmacology, Faculty of Medicine, Kocaeli University, 41380 Kocaeli, Turkey
a   Tel.: +90 262 303 72 50
Guner Ulak
1   Department of Pharmacology, Faculty of Medicine, Kocaeli University, 41380 Kocaeli, Turkey
b   Tel.: +90 262 303 74 66
Sibel Kokturk
2   Department of Histology and Embriyology, Ordu University Medical Faculty, 52000 Ordu, Turkey
c   Tel.: +90 505 514 90 25
Ipek Komsuoglu Celikyurt
1   Department of Pharmacology, Faculty of Medicine, Kocaeli University, 41380 Kocaeli, Turkey
d   Tel.: +90 262 3037457
Furuzan Akar
1   Department of Pharmacology, Faculty of Medicine, Kocaeli University, 41380 Kocaeli, Turkey
e   Tel.: +90 2623037464
Faruk Erden
1   Department of Pharmacology, Faculty of Medicine, Kocaeli University, 41380 Kocaeli, Turkey
f   Tel.: +90 262 303 80 05
› Author Affiliations

Subject Editor:
Further Information

Publication History

Received05 December 2013
revised07 March 2014

accepted04 May 2014

Publication Date:
19 December 2017 (online)

Backgound: Homeopathy is a medical theory and practice that asserts that disease can be cured by remedies that produce symptoms in a healthy person similar to those suffered by a patient with a malady.

Methods: The aim of this study was to investigate effects of homeopathic Anax imperator (dragonfly) (Anax-i 30c and Anax-i 200c) in the forced swim test (FST), elevated plus-maze (EPM) test, hot plate (HP) test and open field test and examined NPY1 receptor expression, in naive mice.

Results: In the FST, treatment with Anax-i 30c or Anax-i 200c significantly diminished immobility time while in EPM test, Anax-i 200c increased the percentage of time spent in open arms as well as the percentage of open arm/total arms. In the HP test, Anax-i 30c or Anax-i 200c decreased the total time mice spent licking their hind paws while in open field test, treatment with Anax-i 200c increased the total distance and speed mice traveled compared to the control group. Three weeks of daily injections with Anax-i 30c or Anax-i 200c caused significant weight loss in mice. Anax-i 30c or Anax-i 200c treatment significantly decreased NPY1 receptor expression, and Anax-i 30c also decreased NPY2 receptor expression.

Conclusion: These results suggest that the homeopathic Anax-i exerts antidepressant, anxiolytic and analgesic-like effects and causes hyperlocomotion and weight loss.

  • References

  • 1 Stav G., Blaustein L., Margalit Y. Influence of nymphal Anax imperator (Odonata: Aeshnidae) on oviposition by the mosquito Culiseta longiareolata (Diptera: Culicidae) and community structure in temporary pools. J Vector Ecol 2000; 25 (02) 190-202.
  • 2 Goldsworthy G.J. The endocrine control of flight metabolism in locusts. Berrıdge M.J., Treherne J.E., Wıgglesworth V.B. Advances in Insect Physiology New York: Academic Press; 1983: 149-204.
  • 3 Goldsworthy G.J. Hormonal control of flight metabolism in Locusts. Chapman R.F., Joern A. Biology of Grasshoppers New York: John Wiley & Sons, Inc.; 1990: 205-225.
  • 4 Gäde G. The hormonal integration of insect flight metabolism. Zool Jahrb Physiol 1992; 96: 211.
  • 5 Lee G., Park J.H. Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster . Genetics 2004; 167 (01) 311-323.
  • 6 Staubli F., Jorgensen T.J., Cazzamali G. et al. Molecular identification of the insect adipokinetic hormone receptors. Proc Natl Acad Sci 2002; 99 (06) 3446-3451.
  • 7 Gäde G., Janssens M.P., Kellner R. A novel peptide in the AKH/RPCH family isolated from the corpora cardiaca of the Emperor dragonfly, Anax imperator . Peptides 1994; 15 (01) 1-6.
  • 8 Suzuki H., Sato S., Tsuchiya T. et al. Identification and characterization of adipokinetic hormone (Locusta migratoria)-like immunoreactivity in the human cerebrospinal fluid. Biochem Biophys Res Commun 1989; 163 (01) 534-540.
  • 9 Ernst E. A systematic review of systematic reviews of homeopathy. Br J Clin Pharmacol 2002; 54 (06) 577-582.
  • 10 Porsolt R.D., Bertin A., Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 1977; 229: 327-336.
  • 11 Zhang L., Hu X., Luo J. et al. Physical exercise improves functional recovery through mitigation of autophagy, attenuation of apoptosis and enhancement of neurogenesis after MCAO in rats. BMC Neurosci 2013; 14: 46.
  • 12 Köktürk S., Ceylan S., Etus V., Yasa N., Ceylan S. Morinda citrifolia L. (noni) and memantine attenuate periventricular tissue injury of the fourth ventricle in hydrocephalic rabbits. Neural Regen Res 2013; (09) 8: 773-782.
  • 13 Tyagi A., Singh R.P., Ramasamy K. et al. Growth inhibition and regression of lung tumors by silibinin: modulation of angiogenesis by macrophage-associated cytokines and nuclear factor-kappaB and signal transducers and activators of transcription 3. Cancer Prev Res (Phila) 2009; 2 (01) 74-83,.
  • 14 Lisa S., Ziemer L.S., Koch C.J. et al. Hypoxia and VEGF mRNA expression in human tumors. Neoplasia 2001; 3 (06) 500-508.
  • 15 Grönke S., Müller G., Hirsch J. et al. Dual lipolytic control of body fat storage and mobilization in Drosophila. PLoS Biol 2007; 5 (06) e137.
  • 16 Lorenz M.W. Adipokinetic hormone inhibits the formation of energy stores and egg production in the cricket Gryllus bimaculatus . Comp Biochem Physiol B Biochem Mol Biol 2003; 136 (02) 197-206.
  • 17 Gäde G., Marco H.G. The adipokinetic hormones of Odonata: a phylogenetic approach. J Insect Physiol 2005; 51 (03) 333-341.
  • 18 Clineschmidt B.V., Martin G.E., Bunting P.R., Papp N.L. Anticonvulsant activity of (+)-5-methyl-10,11-dihydro-5H-dibenzo (a,d) cyclohepten-5-10-imine (MK-801), a substance with potent anticonvulsant, central sympathomimetic and apparent anxiolytic properties. Drug Dev Res 1982; 2: 123-134.
  • 19 Croucher M.J., Collins J.F., Meldrum B.S. Anticonvulsant actions of excitatory amino acid antagonists. Science 1982; 216: 899-901.
  • 20 Trullas R., Skolnick P. Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur J Pharmacol 1990; 185: 1-10.
  • 21 Dunn R.W., Corbett R., Fielding S. Effects of 5-HT1A receptor agonists and NMDA receptor antagonists in the social interaction test and the elevated plus maze. Eur J Pharmacol 1989; 169: 1-10.
  • 22 Tulchinsky E. Fos family members: regulation, structure and role in oncogenic transformation. Histol Histopathol 2000; 15 (03) 921-928.
  • 23 Graybiel A.M., Moratalla R., Robertson H.A. Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum. Proc Natl Acad Sci U S A 1990; 87 (17) 6912-6916.
  • 24 Curran E.J., Akil H., Watson S.J. Psychomotor stimulant- and opiate-induced c-fos mRNA expression patterns in the rat forebrain: comparisons between acute drug treatment and a drug challenge in sensitized animals. Neurochem Res 1996; 21 (11) 1425-1435.
  • 25 Singewald N., Salchner P., Sharp T. Induction of c-Fos expression in specific areas of the fear circuitry in rat forebrain by anxiogenic drugs. Biol Psychiatry 2003; 53 (04) 275-283.
  • 26 VanElzakker M., Fevurly R.D., Breindel T., Spencer R.L. Environmental novelty is associated with a selective increase in Fos expression in the output elements of the hippocampal formation and the perirhinal cortex. Learn Mem 2008; 15 (12) 899-908.
  • 27 Tatemoto K. Neuropeptide Y: History and Overview. In: Michel MC (ed), Vol 162. Handb Exp Pharmacol. Springer, 2004, pp 2–15.
  • 28 Kuo L.E., Kitlinska J.B., Tilan J.U. et al. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat Med 2007; 13 (07) 803-811.
  • 29 Colmers W.F., El Bahn B. Neuropeptide Y and epilepsy. Epilepsy Curr 2003; 2 (03) 53-58.
  • 30 Michel M.C., Beck-Sickinger A., Cox H. et al. XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol Rev 1998; 50 (01) 143-150.
  • 31 White B.D., Dean R.G., Edwards G.L., Martin R.J. Type II corticosteroid receptor stimulation increases NPY gene expression in basomedial hypothalamus of rats. Am J Physiol 1994; 266 5 pt. 2 R1523-R1529.
  • 32 Hanson E.S., Dallman M.F. Neuropeptide Y (NPY) may integrate responses of hypothalamic feeding systems and the hypothalamo-pituitary-adrenal axis. J Neuroendocrinol 1995; 7 (04) 273-279.
  • 33 Pomonis J.D., Levine A.S., Billington C.J. Interaction of the hypothalamic paraventricular nucleus and central nucleus of the amygdala in naloxone blockade of neuropeptide Y-induced feeding revealed by c-fos expression. J Neurosci 1997; 17 (13) 5175-5182.
  • 34 Yehuda R., Brand S., Yang R.K. Plasma neuropeptide Y concentrations in combat exposed veterans: relationship to trauma exposure, recovery from PTSD, and coping. Biol Psychiatry 2006; 59 (07) 660-663.
  • 35 King P.J., Widdowson P.S., Doods H.N., Williams G. Regulation of neuropeptide Y release by neuropeptide Y receptor ligands and calcium channel antagonists in hypothalamic slices. J Neurochem 1999; 73 (02) 641-646.
  • 36 King P.J., Williams G., Doods H., Widdowson P.S. Effect of a selective neuropeptide Y Y(2) receptor antagonist, BIIE0246 on neuropeptide Y release. Eur J Pharmacol 2000; 396 (01) R1-R3.
  • 37 Magnani P., Conforti A., Zanolin E., Marzotto M., Bellavite P. Dose-effect study of Gelsemium sempervirens in high dilutions on anxiety-related responses in mice. Psychopharmacology (Berl) 2010; 210 (04) 533-545.
  • 38 Venard C., Boujedaini N., Mensah-Nyagan A.G., Patte-Mensah C. Comparative analysis of gelsemine and Gelsemium sempervirens activity on neurosteroid allopregnanolone formation in the spinal cord and limbic system. Evid Based Complement Altern Med 2011; 407617.