Homeopathy 2005; 94(02): 86-91
DOI: 10.1016/j.homp.2004.10.002
ORIGINAL PAPER
Copyright ©The Faculty of Homeopathy 2005

Histamine at high dilution reduces spectral density in delta band in sleeping rats

G Ruiz-Vega
1   Laboratorio de Biofísica, Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
,
B Poitevin
2   Association Française por la Recherche en Homeopathie
,
L Pérez-Ordaz
1   Laboratorio de Biofísica, Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
› Institutsangaben

Verantwortlicher Herausgeber dieser Rubrik:
Weitere Informationen

Publikationsverlauf

Received02. Februar 2004
revised20. August 2004

accepted11. Oktober 2004

Publikationsdatum:
22. Dezember 2017 (online)

Abstract

Histamine is a central neurotransmitter, it increases arousal via H1 receptors. This study examines the effect of ultra-diluted histamine on arousal through changes in the sleep pattern of Wistar rats. The spectral density in delta (0.5–2.5 Hz) band, one of the three major spectral components of the sleep-electroencephalogram, was analyzed against time. Rats were randomized to receive histamine 30c (histamine 30c, 0.05 ml every 20 min during the first 2 h orally), histamine intraperitoneal pre-treatment/histamine 30c (histamine 6 mg/kg i.p., followed by histamine 30c) or solvent control. The mean delta band spectral density was lower in the histamine 30c and histamine pretreatment/histamine 30c groups than the control group. Significant differences between histamine 30c and baseline during the first 2 h imply an immediate effect. These results also suggest a dynamic process in which the system spontaneously evolves between two locally stationary states according to a power law. From the time perspective, the system approaches, asymptotically, an equifinal state.

 
  • References

  • 1 Khandelwal J.K., Hough L.B., Green J.P.. Histamine and some of its metabolites in human body fluids. Klin Wochenschr 1982; 60: 914-918
  • 2 Babe KS, Serafin WE. Histamine, bradykinin, and their antagonists. In: Goodman & Gilmans, The Pharmacological Basis of Therapeutics. New York: McGraw Hill, 1996, pp. 581–593.
  • 3 Toyota H., Dugovic C., Koehl M., Laposky A.D., Weber C., Ngo K., Wu Y., Lee D.H., Yanai K., Sakurai E., Watanabe T., Liu C., Chen J., Barbier A.J., Turek F.W., Fung-Leung W.P., Lovenberg T.W.. Behavioral characterization of mice lacking histamine H(3) receptors. Mol Pharmacol 2002; 62 (02) 389-397
  • 4 Orsetti M., Ferretti C., Gamalero R., Ghi P.. Histamine H3-receptor blockade in the rat nucleus basalis magnocellularis improves place recognition memory. Psychopharmacology (Berl) 2002; 159 (02) 133-137
  • 5 Miyazaki S., Onodera K., Imaizumi M., Timmerman H.. Effects of clobenpropit (VUF-9153) a, histamine H3-receptor antagonist, on learning and memory, and on cholinergic and monoaminergic systems in mice. Life Sci 1997; 61 (04) 355-361
  • 6 Sainte-Laudy J., Belon P.. Inhibition of human basophil activation by high dilutions of histamine. Agents Actions 1993; 38: C245-C247
  • 7 Sainte-Laudy J., Belon P.. Application of flow cytometry to the analysis of the immuno suppressive effect of histamine dilutions on human basophil activation. effect of cimetidine. Inflamm Res 1997; 46 (Suppl. 01) 27-28
  • 8 Poitevin B., Davenas E., Benveniste J.. In vitro immunological degranulation of human basophils is modulated by lung histamine and Apis mellifica . Br J Clin Pharm 1988; 25: 439-444
  • 9 Brown V., Ennis M.. Flow-cytometric analysis of basophil activation. inhibition by histamine at concentionnal and homeopathic concentrations. Inflamm Res 2001; 50: S47-S48
  • 10 Monti J.E.. Involvement of histamine in the control of the waking stat. Life Sci 1993; 53: 1331-1338
  • 11 Arrang J.M., Garbarg M., Lancelot J.C., Lecomte J.M., Pollard H., Robba M., Schunack W., Schwartz J.C.. Highly potent and selective ligands for a new class H3 of histamine receptor. Invest Radiol Suppl 1988; 1: S130-S132
  • 12 Arrang J.M., Garbarg M., Lancelot J.C., Lecomte J.M., Pollard H., Robba M., Schunack W., Schwartz J.C.. The third histamine receptor. Highly potent and selective ligands.. Int Arch Allergy Appl Immunol 1989; 88 1–2 79-81
  • 13 Schwierin B., Borbély A.A., Tobler I.. Effects of N6-cyclopentyladenosine and caffeine on sleep regulation in the rat. Eu J Pharmacol 1996; 300: 163-171
  • 14 Rechtschaffen A, Kales A (eds). A Manual of Standardized Terminology, Techniques and Score System for Sleep Stages of Human Subjects. Bethesda, MD: US Department of Health, Education and Welfare, 1968.
  • 15 Borbély AA, Tobler I, Hanagasioglu M.. Effect of sleep deprivation on sleep and EEG spectra in the rat. Behav Brain Res 1984; 14: 171-182
  • 16 Ruiz-Vega G., Pérez-Ordaz L., Proa-Flores P., Aguilar-Díaz Y.. An evaluation of Coffea cruda on rats. Br Hom J 2000; 89: 122-126
  • 17 Ruiz-Vega G., Pérez-Ordaz L., León-Huéramo O., Cruz-Vázquez E., Sánchez-Díaz N.. Comparative effect of Coffea cruda potencies on rats. Homeopathy 2002; 91: 80-84
  • 18 Ruiz-Vega G., Pérez-Ordaz L., Cortés-Galván. Juárez-G F.M.. A kinetic approach to caffeine–Coffea cruda interaction. Homeopathy 2003; 92: 19-29
  • [19] Belougne-Malfati E., Aguejouf O., Doutremepuich F., Belon P., Doutremepuich C.h.. Combination of two doses of acetyl salicylic acid: experimental study of arterial thrombosis. Thromb Res 1998; 90: 215-221
  • 20 Reber A., Poitevin B., Leroy M.H.. Nzobounsana. Optokinetic and vestibulo-ocular reflex adjustment by GABA antagonists. Behav Brain Res 1996; 81: 89-97
  • 21 Paxinos G, Watson Ch. The Rat Brain in Stereotaxic Coordinates, 2nd edn. New York: Academic Press, 1986.
  • 22 Tuomisto L. Involvement of histamine in circadian and other rhythms. In: Watanabe T, Wada H (eds). Histaminergic Neurons: Morphology and Function. Boca Raton, FL: CRC Press, Inc., 1991, pp 283–295.
  • 23 LabVIEW®. Analysis VI Reference Manual. National Instruments Corporation, 1993.
  • 24 Steriade M., Amzica F.. Coalescence of sleep rhythms and their chronology in corticothalamic networks. Sleep Res Online 1998; 1 (01) 1-10
  • 25 Mayhan W.G.. Role of nitric oxide in histamine-induced increases in permeability of the blood–brain barrier. Brain Res 1996; 743: 70-76
  • 26 Deli M.A., Németh L., Falus A., Ábrahám C.S.. Effects of N,N-diethyl-2-[4-(phenylmethyl)phenoxy]ethamine on the blood–brain barrier permeability in the rat. EuropJ Pharmacol 2000; 387: 63-72
  • 27 Contreras D., Steriade M.. Cellular basis of EEG slow rhythms. a study of dynamic corticothalamic relationships. J Neurosc 1995; 15 (01) 604-622
  • 28 Schroeder M. Fractal, Chaos, Power Laws. New York: W.H. Freeman and Company, 1991, pp 103, 122.
  • 29 Bak P, Creutz M. Fractals and self.organized criticality. In: Bunde A, Havlin S. (eds). Fractals in Science. Berlin: Springer, 1994, pp 27–47.
  • 30 Goldberger AL, Amaral LAN, Hausdorff JM, Ivanov PCh, Peng CK, Stanley HE. Fractal dynamics in physiology: Alterations with disease and aging. Colloquium of The National Academy of Sciences, March 23–24, 2001.
  • 31 Bak P., Tang C., Wiesenfeld K.. Self-organized criticality: an explanation of 1/f noise. Phys.Rev. Lett 1987; 59: 381-384
  • 32 Recordati G., Bellini T.G.. A definition of internal constancy and homeostasis in the context of non-equilibrium thermodynamics. Exp Physiol 2004; 89 (01) 27-38
  • 33 Carlson JM, Doyle J. Complexity and robustness. Colloquium of The National Academy of Sciences, March 23–24, 2001.