Homeopathy 2003; 92(03): 145-151
DOI: 10.1016/S1475-4916(03)00037-7
Original Paper
Copyright ©The Faculty of Homeopathy 2003

What is the therapeutically active ingredient of homeopathic potencies ?

O. Weingärtner
1  Department of Basic Research, Dr. Reckeweg & Co. GmbH, Berliner Ring 32, D-64625 Bensheim, Germany
› Author Affiliations

Subject Editor:
Further Information

Publication History

Received03 October 2002
revised06 January 2003

accepted10 February 2003

Publication Date:
27 December 2017 (online)

Abstract

The nature of the ‘active ingredient’, in homeopathic high dilutions is investigated. A model for every degree of dilution is introduced; within this the active ingredient can be dealt with in physical terms. In mathematical terms this model has features which correspond to the axioms of weak quantum theory. Features which are similar to entanglement in ordinary quantum theory are discussed in particular.

 
  • References

  • 1 Bergholz W, Homeopathic dilutions—high potencies, a physicist's dilemma, Br Hom Res Group Comm 1985; 13: 23–36.
  • 2 Barnard GO, Microdose paradox—a new concept. J Am Inst Hom 1965; 58: 205–212.
  • 3 Smith RB, Boericke GW. Modern instrumentation for the evaluation of homeopathic drug structure. J Am Inst Hom 1966; 14: 263–280.
  • 4 Weingärtner O, Kernresonanz—Spektroskopie in der Homöopathieforschung, 2002. Essen: KVC-Verlag.
  • 5 Aabel S, Fossheim S, Rise F. Nuclear magnetic resonance (NMR) studies of homeopathic solutions. Br Hom J 2001; 90: 14–20.
  • 6 Milgrom LR, King KR, Lee J, Pinkus AS. On the investigation of homeopathic potencies using low resolution NMR T2 relaxation times: an experimental and critical survey of the work of Roland Conte et al. Br Hom J 2001; 90: 5–13.
  • 7 Weingärtner O. Modellbildung und homöopathische Potenzen, Forsch. Komplementärmedizin 1997; 4: 174–178.
  • 8 Bouwmeester D, Ekert A, Zeilinger A. The Physics of Quantum Information, 3rd Ed. New York: Springer, 2001.
  • 9 Williams CP, Clearwater SH. Explorations in Quantum Computing. New York: Springer, 1998.
  • 10 Gramß T, Bornholdt S, Groß M, Mitchell M, Pellizzari T. Non-Standard Computation. Weinheim: Wiley-VCH, 1998.
  • 11 Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete ? Phys Rev 1935; 47: 777–780.
  • 12 Bohm D. A suggested interpretation of the quantum theory in terms of hidden variables, I and II. In: Wheeler JA (ed.). Quantum Theory and Measurement. Princeton, NJ: Princeton University Press, 1952.
  • 13 Bell JS. On the Einstein Podolsky Rosen paradox. Physics 1964; 3: 195–200.
  • 14 Aspect A, Grangier P, Roger G. Experimental test of Bell's inequalities using time-varying analyzers. Phys Rev Lett 1982; 49: 1804–1807.
  • 15 Julsgaard B, Kozhekin A, Polzik ES. Experimental long-lived entanglement of two macroscopic objects. Nature 2001; 413: 400–403.
  • 16 Altewischer E, van Exter P, Woerdman JP. Polasmon-assisted transmission of entangled photons. Nature 2002; 418: 304–306.
  • 17 Atmanspacher H, Römer H, Walach H. Weak quantum theory: complementarity and entanglement in physics and beyond. Found Phys 2002; 32: 379–406.
  • 18 Haag R. Local Quantum Physics. Berlin: Springer, 1996.
  • 19 Thirring W. Lehrbuch der Mathematischen Physik, Bd. 3. New York: Springer, 1994.
  • 20 Weyl H. Gruppentheorie und Quantenmechanik. Leipzig: Hirzl, 1928.
  • 21 Minkowski H. Gesammelte Abhandlungen Bd. II. Leipzig-Berlin: Teubner, 1911.
  • 22 Rojas R. Theorie der neuronalen Netze. Berlin: Springer, 1993.
  • 23 Carrington C. McLachlan AD. Introduction to Magnetic Resonance. London: Chapman & Hall, 1967.