2.9 Fluorination Enabled by Photoredox Reactions
Book
Editor: Paquin, J.-F.
Title: Modern Strategies in Organofluorine Chemistry 2
Online ISBN: 9783132458307; Book DOI: 10.1055/b000000927
early view © Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry
Science of Synthesis Reference Libraries
Parent publication
Title: Science of Synthesis
DOI: 10.1055/b-00000101
Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Nevado, C.; You, S.-L.
Type: Multivolume Edition
Abstract

In recent years, photoredox catalysis has become a useful strategy in the field of synthetic chemistry because generation of reactive radicals, ionic species, and organometallics under mild reaction conditions can be realized. This review mainly discusses fluorination reactions of carbon skeletons using photoredox catalysis. In addition, seminal works on photochemical hydrogen-atom transfer (HAT) and photocatalyst-free photoinduced electron-transfer systems are also handled. These systems can be applied to fluorination reactions of C—H bonds, C—C bonds, C=C bonds, and appropriate functional groups.
Key words
Photoredox catalysis - Metallaphotoredox catalysis - Hydrogen atom transfer (HAT) - Photoinduced electron transfer - Single electron transfer (SET) - Redox reaction - Radicals - Ionic radicals - Carbocationic species - Organometallics - SOMOphilic fluorination - Nucleophilic fluorination - C—H functionalization- 2 Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
- 3 Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Chem. Rev. 2016; 116: 422
- 4 Mei H, Han J, Fustero S, Medio-Simon M, Sedgwick DM, Santi C, Ruzziconi R, Soloshonok VA. Chem.–Eur. J. 2019; 25: 11797
- 7 Fluorine in Medicinal Chemistry and Chemical Biology. Ojima I. Wiley-Blackwell; Chichester, UK 2009
- 10 Szpera R, Moseley DFJ, Smith LB, Sterling AJ, Gouverneur V. Angew. Chem. Int. Ed. 2019; 58: 14824
- 12 Visible Light Photocatalysis in Organic Chemistry. Stephenson CRJ, Yoon TP, MacMillan DWC. Wiley VCH; Weinheim (Germany) 2018
- 20 Cannalire R, Pelliccia S, Sancineto L, Novellino E, Tron GC, Giustiniano M. Chem. Soc. Rev. 2021; 50: 766
- 26 Rueda-Becerril M, Sazepin CC, Leung JCT, Okbinoglu T, Kennepohl P, Paquin J.-F, Sammis GM. J. Am. Chem. Soc. 2012; 134: 4026
- 35 Halperin SD, Kwon D, Holmes M, Regalado EL, Campeau LC, DiRocco DA, Britton R. Org. Lett. 2015; 17: 5200
- 36 Nodwell MB, Bagai A, Halperin SD, Martin RE, Knust H, Britton R. Chem. Commun. (Cambridge) 2015; 51: 11783
- 43 Morcillo SP, Dauncey EM, Kim JH, Douglas JJ, Sheikh NS, Leonori D. Angew. Chem. Int. Ed. 2018; 57: 12945
- 56 Chen W, Huang Z, Tay NES, Giglio B, Wang M, Wang H, Wu Z, Nicewicz DA, Li Z. Science (Washington, D. C.) 2019; 364: 1170
- 60 Rueda-Becerril M, Mahé O, Drouin M, Majewski MB, West JG, Wolf MO, Sammis GM, Paquin J.-F. J. Am. Chem. Soc. 2014; 136: 2637