Yoshikai, N. : 2023 Science of Synthesis, 2023/3: Base-Metal Catalysis 2 DOI: 10.1055/sos-SD-239-00329
Base-Metal Catalysis 2

2.13 Base-Metal-Catalyzed Hydrogenation of Polar Unsaturated Bonds

More Information

Book

Editor: Yoshikai, N.

Authors: Adak, L. ; Aoki, S.; Banerjee, S. ; Bedford, R. B. ; Cheng, Z.; Costas, M. ; Gao, M.; Garai, B.; Ge, S. ; Gosmini, C. ; Hota, S. K.; Ilies, L. ; Jindal, A.; Kawanaka, Y.; Li, H. ; Li, M.; Liu, Q. ; Lu, Z. ; Mandal, R.; Matsunaga, S. ; Murarka, S. ; Nakamura, M. ; Nolla-Saltiel, R. ; Ollevier, T. ; Palone, A. ; Panda, S. P.; Sahoo, S.; Sang, J.; Schiltz, P.; Shenvi, R. A. ; Sundararaju, B. ; van der Puyl, V. ; Vicens, L. ; Wang, C. ; Wang, Y. ; Yang, X.; Yang, Y.; Yoshikai, N. ; Yoshino, T. ; Zeng, X. ; Zhang, G.

Title: Base-Metal Catalysis 2

Print ISBN: 9783132455030; Online ISBN: 9783132455054; Book DOI: 10.1055/b000000440

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

The catalytic hydrogenation of carbonyl compounds to afford the corresponding saturated products is of great significance in both organic synthesis and industrial application. Historically, such transformations have generally been based on the use of noble-metal catalysts; however, in recent years, much attention has been paid to the development of earth-abundant-metal catalysts as alternatives to the well-established noble-metal congeners in terms of sustainability. This review comprehensively describes the hydrogenation of carbonyl compounds and related functional groups catalyzed by base metals, including iron, cobalt, manganese, nickel, and copper. These results are expected to promote the further development and prosperity of base-metal catalysis.

 
  • 1 Pritchard J, Filonenko GA, van Putten R, Hensen EJM, Pidko EA. Chem. Soc. Rev. 2015; 44: 3808
  • 2 Bouveault L, Blanc G. C. R. Hebd. Seances Acad. Sci. 1903; 136: 1676
  • 3 Finholt AE, Bond Jr AC, Schlesinger HI. J. Am. Chem. Soc. 1947; 69: 1199
  • 4 Nystrom RF, Brown WG. J. Am. Chem. Soc. 1947; 69: 1197
  • 5 Chaikin SW, Brown WG. J. Am. Chem. Soc. 1949; 71: 122
  • 6 Schlesinger HI, Brown HC, Hoekstra HR, Rapp LR. J. Am. Chem. Soc. 1953; 75: 199
  • 7 Young JF, Osborn JA, Jardine FH, Wilkinson G. Chem. Commun. 1965; 131
  • 8 Osborn JA, Jardine FH, Young JF, Wilkinson G. J. Chem. Soc. A 1966; 1711
  • 9 Schrock RR, Osborn JA. J. Chem. Soc. D 1970; 567
  • 10 Blum Y, Czarkie D, Rahamim Y, Shvo Y. Organometallics 1985; 4: 1459
  • 11 Shvo Y, Czarkie D, Rahamim Y, Chodosh DF. J. Am. Chem. Soc. 1986; 108: 7400
  • 12 Ohkuma T, Ooka H, Hashiguchi S, Ikariya T, Noyori R. J. Am. Chem. Soc. 1995; 117: 2675
  • 13 Noyori R, Ohkuma T. Angew. Chem. Int. Ed. 2001; 40: 40
  • 14 Rautenstrauch V, Hoang-Cong X, Churlaud R, Abdur-Rashid K, Morris RH. Chem.–Eur. J. 2003; 9: 4954
  • 15 Zhang J, Leitus G, Ben-David Y, Milstein D. Angew. Chem. Int. Ed. 2006; 45: 1113
  • 16 Kuriyama W, Matsumoto T, Ogata O, Ino Y, Aoki K, Tanaka S, Ishida K, Kobayashi T, Sayo N, Saito T. Org. Process Res. Dev. 2012; 16: 166
  • 17 Xie J.-H, Liu X.-Y, Xie J.-B, Wang L.-X, Zhou Q.-L. Angew. Chem. Int. Ed. 2011; 50: 7329
  • 18 Yamakawa M, Ito H, Noyori R. J. Am. Chem. Soc. 2000; 122: 1466
  • 19 Noyori R, Yamakawa M, Hashiguchi S. J. Org. Chem. 2001; 66: 7931
  • 20 Sandoval CA, Ohkuma T, Muñiz K, Noyori R. J. Am. Chem. Soc. 2003; 125: 13490
  • 21 Dub PA, Gordon JC. Nat. Rev. Chem. 2018; 2: 396
  • 22 Zhao B, Han Z, Ding K. Angew. Chem. Int. Ed. 2013; 52: 4744
  • 23 Khusnutdinova JR, Milstein D. Angew. Chem. Int. Ed. 2015; 54: 12236
  • 24 Samec JSM, Bäckvall J.-E, Andersson PG, Brandt P. Chem. Soc. Rev. 2006; 35: 237
  • 25 Dub PA, Ikariya T. ACS Catal. 2012; 2: 1718
  • 26 Gunanathan C, Milstein D. Chem. Rev. 2014; 114: 12024
  • 27 Liu Y, Yue X, Luo C, Zhang L, Lei M. Energy Environ. Mater. 2019; 2: 292
  • 28 Arai N, Ohkuma T. Science of Synthesis: Stereoselective Synthesis 2011; 2: 9
  • 29 Llopis Q, Ayad T, Phansavath P, Ratovelomanana-Vidal V. Science of Synthesis: Catalytic Reduction in Organic Synthesis 2018; 2: 93
  • 30 Clapham SE, Hadzovic A, Morris RH. Coord. Chem. Rev. 2004; 248: 2201
  • 31 Abdur-Rashid K, Faatz M, Lough AJ, Morris RH. J. Am. Chem. Soc. 2001; 123: 7473
  • 32 Abdur-Rashid K, Clapham SE, Hadzovic A, Harvey JN, Lough AJ, Morris RH. J. Am. Chem. Soc. 2002; 124: 15104
  • 33 Dub PA, Henson NJ, Martin RL, Gordon JC. J. Am. Chem. Soc. 2014; 136: 3505
  • 34 Dub PA, Gordon JC. Dalton Trans. 2016; 45: 6756
  • 35 Dub PA, Gordon JC. ACS Catal. 2017; 7: 6635
  • 36 Hartmann R, Chen P. Angew. Chem. Int. Ed. 2001; 40: 3581
  • 37 Takebayashi S, Dabral N, Miskolzie M, Bergens SH. J. Am. Chem. Soc. 2011; 133: 9666
  • 38 Bullock RM. Science (Washington, D. C.) 2013; 342: 1054
  • 39 Chirik P, Morris R. Acc. Chem. Res. 2015; 48: 2495
  • 40 Filonenko GA, van Putten R, Hensen EJM, Pidko EA. Chem. Soc. Rev. 2018; 47: 1459
  • 41 Kallmeier F, Kempe R. Angew. Chem. Int. Ed. 2018; 57: 46
  • 42 Zell T, Langer R. ChemCatChem 2018; 10: 1930
  • 43 Berning DE, Noll BC, DuBois DL. J. Am. Chem. Soc. 1999; 121: 11432
  • 44 Wilson AD, Miller AJM, DuBois DL, Labinger JA, Bercaw JE. Inorg. Chem. 2010; 49: 3918
  • 45 Sandhya KS, Suresh CH. J. Phys. Chem. A 2017; 121: 2814
  • 46 Alig L, Fritz M, Schneider S. Chem. Rev. 2019; 119: 2681
  • 47 Casey CP, Guan H. J. Am. Chem. Soc. 2007; 129: 5816
  • 48 Langer R, Leitus G, Ben-David Y, Milstein D. Angew. Chem. Int. Ed. 2011; 50: 2120
  • 49 Zhang G, Scott BL, Hanson SK. Angew. Chem. Int. Ed. 2012; 51: 12102
  • 50 Elangovan S, Topf C, Fischer S, Jiao H, Spannenberg A, Baumann W, Ludwig R, Junge K, Beller M. J. Am. Chem. Soc. 2016; 138: 8809
  • 51 Wang Y, Liu S, Yang H, Li H, Lan Y, Liu Q. Nat. Chem. 2022; 14: 1233
  • 52 Baidilov D, Hayrapetyan D, Khalimon AY. Tetrahedron 2021; 98: 132435
  • 53 Langer R, Iron MA, Konstantinovski L, Diskin-Posner Y, Leitus G, Ben-David Y, Milstein D. Chem.–Eur. J. 2012; 18: 7196
  • 54 Fleischer S, Zhou S, Junge K, Beller M. Angew. Chem. Int. Ed. 2013; 52: 5120
  • 55 Mérel DS, Elie M, Lohier J.-F, Gaillard S, Renaud J.-L. ChemCatChem 2013; 5: 2939
  • 56 Wienhofer G, Westerhaus FA, Junge K, Ludwig R, Beller M. Chem.–Eur. J. 2013; 19: 7701
  • 57 Chakraborty S, Lagaditis PO, Förster M, Bielinski EA, Hazari N, Holthausen MC, Jones WD, Schneider S. ACS Catal. 2014; 4: 3994
  • 58 Gorgas N, Stöger B, Veiros LF, Pittenauer E, Allmaier G, Kirchner K. Organometallics 2014; 33: 6905
  • 59 Mazza S, Scopelliti R, Hu X. Organometallics 2015; 34: 1538
  • 60 Gorgas N, Stöger B, Veiros LF, Kirchner K. ACS Catal. 2016; 6: 2664
  • 61 Butschke B, Feller M, Diskin-Posner Y, Milstein D. Catal. Sci. Technol. 2016; 6: 4428
  • 62 Schröder-Holzhacker C, Gorgas N, Stöger B, Kirchner K. Monatsh. Chem. 2016; 147: 1023
  • 63 Facchini SV, Neudörfl J.-M, Pignataro L, Cettolin M, Gennari C, Berkessel A, Piarulli U. ChemCatChem 2017; 9: 1461
  • 64 Weber S, Brünig J, Zeindlhofer V, Schröder C, Stöger B, Limbeck A, Kirchner K, Bica K. ChemCatChem 2018; 10: 4386
  • 65 Yi Y, Liu H, Xiao L.-P, Wang B, Song G. ChemSusChem 2018; 11: 1474
  • 66 Dai H, Li W, Krause JA, Guan H. Inorg. Chem. 2021; 60: 6521
  • 67 Gärtner D, Welther A, Rad BR, Wolf R, Jacobi von Wangelin A. Angew. Chem. Int. Ed. 2014; 53: 3722
  • 68 Rösler S, Obenauf J, Kempe R. J. Am. Chem. Soc. 2015; 137: 7998
  • 69 Lin Y, Zhu D.-P, Du Y.-R, Zhang R, Zhang S.-J, Xu B.-H. Org. Lett. 2019; 21: 2693
  • 70 Duan Y.-N, Du X, Cui Z, Zeng Y, Liu Y, Yang T, Wen J, Zhang X. J. Am. Chem. Soc. 2019; 141: 20424
  • 71 Zhong R, Wei Z, Zhang W, Liu S, Liu Q. Chem 2019; 5: 1552
  • 72 Kallmeier F, Irrgang T, Dietel T, Kempe R. Angew. Chem. Int. Ed. 2016; 55: 11 806
  • 73 Bruneau-Voisine A, Wang D, Roisnel T, Darcel C, Sortais J.-B. Catal. Commun. 2017; 92: 1
  • 74 Glatz M, Stöger B, Himmelbauer D, Veiros LF, Kirchner K. ACS Catal. 2018; 8: 4009
  • 75 Li H, Wei D, Bruneau-Voisine A, Ducamp M, Henrion M, Roisnel T, Dorcet V, Darcel C, Carpentier J.-F, Soulé J.-F, Sortais J.-B. Organometallics 2018; 37: 1271
  • 76 Wei D, Bruneau-Voisine A, Chauvin T, Dorcet V, Roisnel T, Valyaev DA, Lugan N, Sortais J.-B. Adv. Synth. Catal. 2018; 360: 676
  • 77 Weber S, Stöger B, Kirchner K. Org. Lett. 2018; 20: 7212
  • 78 Buhaibeh R, Filippov OA, Bruneau-Voisine A, Willot J, Duhayon C, Valyaev DA, Lugan N, Canac Y, Sortais J.-B. Angew. Chem. Int. Ed. 2019; 58: 6727
  • 79 Pan HJ, Hu X. Angew. Chem. Int. Ed. 2020; 59: 4942
  • 80 Weber S, Brünig J, Veiros LF, Kirchner K. Organometallics 2021; 40: 1388
  • 81 Yang W, Chernyshov IY, van Schendel RKA, Weber M, Müller C, Filonenko GA, Pidko EA. Nat. Commun. 2021; 12: 12
  • 82 Chakraborty S, Piszel PE, Brennessel WW, Jones WD. Organometallics 2015; 34: 5203
  • 83 Casey CP, Guan H. J. Am. Chem. Soc. 2009; 131: 2499
  • 84 Morello GR, Hopmann KH. ACS Catal. 2017; 7: 5847
  • 85 Sui-Seng C, Freutel F, Lough AJ, Morris RH. Angew. Chem. Int. Ed. 2008; 47: 940
  • 86 Sui-Seng C, Haque FN, Hadzovic A, Pütz A.-M, Reuss V, Meyer N, Lough AJ, Zimmer-De Iuliis M, Morris RH. Inorg. Chem. 2009; 48: 735
  • 87 Berkessel A, Reichau S, von der Höh A, Leconte N, Neudörfl J.-M. Organometallics 2011; 30: 3880
  • 88 Lu L.-Q, Li Y, Junge K, Beller M. Angew. Chem. Int. Ed. 2013; 52: 8382
  • 89 Lagaditis PO, Sues PE, Sonnenberg JF, Wan KY, Lough AJ, Morris RH. J. Am. Chem. Soc. 2014; 136: 1367
  • 90 Li Y, Yu S, Wu X, Xiao J, Shen W, Dong Z, Gao J. J. Am. Chem. Soc. 2014; 136: 4031
  • 91 Sonnenberg JF, Lough AJ, Morris RH. Organometallics 2014; 33: 6452 Organometallics 2016; 35: 2772
  • 92 Gajewski P, Renom-Carrasco M, Facchini SV, Pignataro L, Lefort L, de Vries JG, Ferraccioli R, Forni A, Piarulli U, Gennari C. Eur. J. Org. Chem. 2015; 1887
  • 93 Hodgkinson R, Del Grosso A, Clarkson G, Wills M. Dalton Trans. 2016; 45: 3992
  • 94 Zirakzadeh A, Kirchner K, Roller A, Stöger B, Widhalm M, Morris RH. Organometallics 2016; 35: 3781
  • 95 Smith SAM, Lagaditis PO, Lupke A, Lough AJ, Morris RH. Chem.–Eur. J. 2017; 23: 7212
  • 96 Huber R, Passera A, Mezzetti A. Organometallics 2018; 37: 396
  • 97 Zhang D, Zhu E.-Z, Lin Z.-W, Wei Z.-B, Li Y.-Y, Gao J.-X. Asian J. Org. Chem. 2016; 5: 1323
  • 98 Du T, Wang B, Wang C, Xiao J, Tang W. Chin. Chem. Lett. 2021; 32: 1241
  • 99 Widegren MB, Harkness GJ, Slawin AMZ, Cordes DB, Clarke ML. Angew. Chem. Int. Ed. 2017; 56: 5825 Angew. Chem. Int. Ed. 2017; 56: 9265
  • 100 Garbe M, Junge K, Walker S, Wei Z, Jiao H, Spannenberg A, Bachmann S, Scalone M, Beller M. Angew. Chem. Int. Ed. 2017; 56: 11237
  • 101 Passera A, Mezzetti A. Adv. Synth. Catal. 2019; 361: 4691
  • 102 Ling F, Hou H, Chen J, Nian S, Yi X, Wang Z, Song D, Zhong W. Org. Lett. 2019; 21: 3937
  • 103 Zhang L, Tang Y, Han Z, Ding K. Angew. Chem. Int. Ed. 2019; 58: 4973
  • 104 Ling F, Chen J, Nian S, Hou H, Yi X, Wu F, Xu M, Zhong W. Synlett 2020; 31: 285
  • 105 Zeng L, Yang H, Zhao M, Wen J, Tucker JHR, Zhang X. ACS Catal. 2020; 10: 13794
  • 106 Zhang L, Wang Z, Han Z, Ding K. Angew. Chem. Int. Ed. 2020; 59: 15565
  • 107 Seo CSG, Tsui BTH, Gradiski MV, Smith SAM, Morris RH. Catal. Sci. Technol. 2021; 11: 3153
  • 108 Hamada Y, Koseki Y, Fujii T, Maeda T, Hibino T, Makino K. Chem. Commun. (Cambridge) 2008; 6206
  • 109 Wang F, Tan X, Wu T, Zheng L.-S, Chen G.-Q, Zhang X. Chem. Commun. (Cambridge) 2020; 56: 15557
  • 110 Deng C.-Q, Liu J, Luo J.-H, Gan L.-J, Deng J, Fu Y. Angew. Chem. Int. Ed. 2022; 61: e202 115 983
  • 111 Deng C.-Q, Deng J. Org. Lett. 2022; 24: 2494
  • 112 Xiao G, Xie C, Guo Q, Zi G, Hou G, Huang Y. Org. Lett. 2022; 24: 2722
  • 113 Shimizu H, Igarashi D, Kuriyama W, Yusa Y, Sayo N, Saito T. Org. Lett. 2007; 9: 1655 Org. Lett. 2007; 9: 3199
  • 114 Junge K, Wendt B, Addis D, Zhou S, Das S, Fleischer S, Beller M. Chem.–Eur. J. 2011; 17: 101
  • 115 Krabbe SW, Hatcher MA, Bowman RK, Mitchell MB, McClure MS, Johnson JS. Org. Lett. 2013; 15: 4560
  • 116 Zatolochnaya OV, Rodríguez S, Zhang Y, Lao KS, Tcyrulnikov S, Li G, Wang X.-J, Qu B, Biswas S, Mangunuru HPR, Rivalti D, Sieber JD, Desrosiers J.-N, Leung JC, Grinberg N, Lee H, Haddad N, Yee NK, Song JJ, Kozlowski MC, Senanayake CH. Chem. Sci. 2018; 9: 4505
  • 117 Wang Y, Zhu L, Shao Z, Li G, Lan Y, Liu Q. J. Am. Chem. Soc. 2019; 141: 17337
  • 118 Wang Y, Wang M, Li Y, Liu Q. Chem 2021; 7: 1180
  • 119 Makino K, Hiroki Y, Hamada Y. J. Am. Chem. Soc. 2005; 127: 5784
  • 120 Zell T, Ben-David Y, Milstein D. Angew. Chem. Int. Ed. 2014; 53: 4685
  • 121 Werkmeister S, Junge K, Wendt B, Alberico E, Jiao H, Baumann W, Junge H, Gallou F, Beller M. Angew. Chem. Int. Ed. 2014; 53: 8722
  • 122 Chakraborty S, Dai H, Bhattacharya P, Fairweather NT, Gibson MS, Krause JA, Guan H. J. Am. Chem. Soc. 2014; 136: 7869
  • 123 Elangovan S, Wendt B, Topf C, Bachmann S, Scalone M, Spannenberg A, Jiao H, Baumann W, Junge K, Beller M. Adv. Synth. Catal. 2016; 358: 820
  • 124 Gajewski P, Gonzalez-de-Castro A, Renom-Carrasco M, Piarulli U, Gennari C, de Vries JG, Lefort L, Pignataro L. ChemCatChem 2016; 8: 3431
  • 125 Srimani D, Mukherjee A, Goldberg AF, Leitus G, Diskin-Posner Y, Shimon LJW, Ben-David Y, Milstein D. Angew. Chem. Int. Ed. 2015; 54: 12357
  • 126 Yuwen J, Chakraborty S, Brennessel WW, Jones WD. ACS Catal. 2017; 7: 3735
  • 127 Junge K, Wendt B, Cingolani A, Spannenberg A, Wei Z, Jiao H, Beller M. Chem.–Eur. J. 2018; 24: 1046
  • 128 Elangovan S, Garbe M, Jiao H, Spannenberg A, Junge K, Beller M. Angew. Chem. Int. Ed. 2016; 55: 15364
  • 129 Espinosa-Jalapa NA, Nerush A, Shimon LJW, Leitus G, Avram L, Ben-David Y, Milstein D. Chem.–Eur. J. 2017; 23: 5934
  • 130 van Putten R, Uslamin EA, Garbe M, Liu C, Gonzalez-de-Castro A, Lutz M, Junge K, Hensen EJM, Beller M, Lefort L, Pidko EA. Angew. Chem. Int. Ed. 2017; 56: 7531
  • 131 Li X.-G, Li F, Xu Y, Xiao L.-J, Xie J.-H, Zhou Q.-L. Adv. Synth. Catal. 2022; 364: 744
  • 132 Yang W, Kalavalapalli TY, Krieger AM, Khvorost TA, Chernyshov IY, Weber M, Uslamin EA, Pidko EA, Filonenko GA. J. Am. Chem. Soc. 2022; 144: 8129
  • 133 Zimmermann BM, Ngoc TT, Tzaras D.-I, Kaicharla T, Teichert JF. J. Am. Chem. Soc. 2021; 143: 16865
  • 134 Garg JA, Chakraborty S, Ben-David Y, Milstein D. Chem. Commun. (Cambridge) 2016; 52: 5285
  • 135 Rezayee NM, Samblanet DC, Sanford MS. ACS Catal. 2016; 6: 6377
  • 136 Schneck F, Assmann M, Balmer M, Harms K, Langer R. Organometallics 2016; 35: 1931
  • 137 Jayarathne U, Zhang Y, Hazari N, Bernskoetter WH. Organometallics 2017; 36: 409
  • 138 Papa V, Cabrero-Antonino JR, Alberico E, Spanneberg A, Junge K, Junge H, Beller M. Chem. Sci. 2017; 8: 3576
  • 139 Das UK, Janes T, Kumar A, Milstein D. Green Chem. 2020; 22: 3079
  • 140 Arévalo A, Ovando-Segovia S, Flores-Alamo M, García JJ. Organometallics 2013; 32: 2939
  • 141 Zou Y.-Q, Chakraborty S, Nerush A, Oren D, Diskin-Posner Y, Ben-David Y, Milstein D. ACS Catal. 2018; 8: 8014
  • 142 Papa V, Cabrero-Antonino JR, Spannenberg A, Junge K, Beller M. Catal. Sci. Technol. 2020; 10: 6116
  • 143 Cabrero-Antonino JR, Alberico E, Junge K, Junge H, Beller M. Chem. Sci. 2016; 7: 3432
  • 144 Kaithal A, Hölscher M, Leitner W. Angew. Chem. Int. Ed. 2018; 57: 13449
  • 145 Kumar A, Janes T, Espinosa-Jalapa NA, Milstein D. Angew. Chem. Int. Ed. 2018; 57: 12076
  • 146 Zubar V, Lebedev Y, Azofra LM, Cavallo L, El-Sepelgy O, Rueping M. Angew. Chem. Int. Ed. 2018; 57: 13439
  • 147 Ferretti F, Scharnagl FK, DallʼAnese A, Jackstell R, Dastgir S, Beller M. Catal. Sci. Technol. 2019; 9: 3548
  • 148 Das UK, Kumar A, Ben-David Y, Iron MA, Milstein D. J. Am. Chem. Soc. 2019; 141: 12962
  • 149 Korstanje TJ, van der Vlugt JI, Elsevier CJ, de Bruin B. Science (Washington, D. C.) 2015; 350: 298
  • 150 Langer R, Diskin-Posner Y, Leitus G, Shimon LJW, Ben-David Y, Milstein D. Angew. Chem. Int. Ed. 2011; 50: 9948
  • 151 Rivada-Wheelaghan O, Dauth A, Leitus G, Diskin-Posner Y, Milstein D. Inorg. Chem. 2015; 54: 4526
  • 152 Zhang Y, MacIntosh AD, Wong JL, Bielinski EA, Williard PG, Mercado BQ, Hazari N, Bernskoetter WH. Chem. Sci. 2015; 6: 4291
  • 153 Zhu F, Zhu-Ge L, Yang G, Zhou S. ChemSusChem 2015; 8: 609
  • 154 Bertini F, Gorgas N, Stöger B, Peruzzini M, Veiros LF, Kirchner K, Gonsalvi L. ACS Catal. 2016; 6: 2889
  • 155 Federsel C, Ziebart C, Jackstell R, Baumann W, Beller M. Chem.–Eur. J. 2012; 18: 72
  • 156 Badiei YM, Wang W.-H, Hull JF, Szalda DJ, Muckerman JT, Himeda Y, Fujita E. Inorg. Chem. 2013; 52: 12576
  • 157 Jeletic MS, Mock MT, Appel AM, Linehan JC. J. Am. Chem. Soc. 2013; 135: 11533
  • 158 Spentzos AZ, Barnes CL, Bernskoetter WH. Inorg. Chem. 2016; 55: 8225
  • 159 Burgess SA, Grubel K, Appel AM, Wiedner ES, Linehan JC. Inorg. Chem. 2017; 56: 8580
  • 160 Vollmer MV, Ye J, Linehan JC, Graziano BJ, Preston A, Wiedner ES, Lu CC. ACS Catal. 2020; 10: 2459
  • 161 Dubey A, Nencini L, Fayzullin RR, Nervi C, Khusnutdinova JR. ACS Catal. 2017; 7: 3864
  • 162 Bertini F, Glatz M, Gorgas N, Stöger B, Peruzzini M, Veiros LF, Kirchner K, Gonsalvi L. Chem. Sci. 2017; 8: 5024
  • 163 Burgess SA, Kendall AJ, Tyler DR, Linehan JC, Appel AM. ACS Catal. 2017; 7: 3089
  • 164 Cammarota RC, Vollmer MV, Xie J, Ye J, Linehan JC, Burgess SA, Appel AM, Gagliardi L, Lu CC. J. Am. Chem. Soc. 2017; 139: 14244
  • 165 Zall CM, Linehan JC, Appel AM. ACS Catal. 2015; 5: 5301
  • 166 Federsel C, Boddien A, Jackstell R, Jennerjahn R, Dyson PJ, Scopelliti R, Laurenczy G, Beller M. Angew. Chem. Int. Ed. 2010; 49: 9777
  • 167 Ziebart C, Federsel C, Anbarasan P, Jackstell R, Baumann W, Spannenberg A, Beller M. J. Am. Chem. Soc. 2012; 134: 20701
  • 168 Jayarathne U, Hazari N, Bernskoetter WH. ACS Catal. 2018; 8: 1338
  • 169 Daw P, Chakraborty S, Leitus G, Diskin-Posner Y, Ben-David Y, Milstein D. ACS Catal. 2017; 7: 2500
  • 170 Schneidewind J, Adam R, Baumann W, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2017; 56: 1890
  • 171 Kar S, Goeppert A, Kothandaraman J, Prakash GKS. ACS Catal. 2017; 7: 6347
  • 172 Dong K, Elangovan S, Sang R, Spannenberg A, Jackstell R, Junge K, Li Y, Beller M. Nat. Commun. 2016; 7: 12075
  • 173 Ryabchuk P, Stier K, Junge K, Checinski MP, Beller M. J. Am. Chem. Soc. 2019; 141: 16923
  • 174 Kar S, Goeppert A, Prakash GKS. J. Am. Chem. Soc. 2019; 141: 12518
  • 175 Pagnoux-Ozherelyeva A, Pannetier N, Mbaye MD, Gaillard S, Renaud J.-L. Angew. Chem. Int. Ed. 2012; 51: 4976
  • 176 Thai T.-T, Mérel DS, Poater A, Gaillard S, Renaud J.-L. Chem.–Eur. J. 2015; 21: 7066
  • 177 Sandl S, Maier TM, van Leest NP, Kröncke S, Chakraborty U, Demeshko S, Koszinowski K, de Bruin B, Meyer F, Bodensteiner M, Herrmann C, Wolf R, Jacobi von Wangelin A. ACS Catal. 2019; 9: 7596
  • 178 Wei D, Bruneau-Voisine A, Valyaev DA, Lugan N, Sortais J.-B. Chem. Commun. (Cambridge) 2018; 54: 4302
  • 179 Freitag F, Irrgang T, Kempe R. J. Am. Chem. Soc. 2019; 141: 11677
  • 180 Wang Z, Chen L, Mao G, Wang C. Chin. Chem. Lett. 2020; 31: 1890
  • 181 Zhou S, Fleischer S, Junge K, Beller M. Angew. Chem. Int. Ed. 2011; 50: 5120
  • 182 Seo CSG, Tannoux T, Smith SAM, Lough AJ, Morris RH. J. Org. Chem. 2019; 84: 12040
  • 183 Hu Y, Zhang Z, Zhang J, Liu Y, Gridnev ID, Zhang W. Angew. Chem. Int. Ed. 2019; 58: 15767
  • 184 Li B, Chen J, Zhang Z, Gridnev ID, Zhang W. Angew. Chem. Int. Ed. 2019; 58: 7329
  • 185 Zhao X, Zhang F, Liu K, Zhang X, Lv H. Org. Lett. 2019; 21: 8966
  • 186 Liu G, Zhang X, Wang H, Cong H, Zhang X, Dong X.-Q. Chem. Commun. (Cambridge) 2020; 56: 4934
  • 187 Liu Y, Yi Z, Yang X, Wang H, Yin C, Wang M, Dong X.-Q, Zhang X. ACS Catal. 2020; 10: 11153
  • 188 Li B, Liu D, Hu Y, Chen J, Zhang Z, Zhang W. Eur. J. Org. Chem. 2021; 3421
  • 189 Bornschein C, Werkmeister S, Wendt B, Jiao H, Alberico E, Baumann W, Junge H, Junge K, Beller M. Nat. Commun. 2014; 5: 4111
  • 190 Chakraborty S, Leitus G, Milstein D. Chem. Commun. (Cambridge) 2016; 52: 1812
  • 191 Lange S, Elangovan S, Cordes C, Spannenberg A, Jiao H, Junge H, Bachmann S, Scalone M, Topf C, Junge K, Beller M. Catal. Sci. Technol. 2016; 6: 4768
  • 192 Mukherjee A, Srimani D, Chakraborty S, Ben-David Y, Milstein D. J. Am. Chem. Soc. 2015; 137: 8888
  • 193 Adam R, Bheeter CB, Cabrero-Antonino JR, Junge K, Jackstell R, Beller M. ChemSusChem 2017; 10: 842
  • 194 Tokmic K, Jackson BJ, Salazar A, Woods TJ, Fout AR. J. Am. Chem. Soc. 2017; 139: 13554
  • 195 Schneekönig J, Tannert B, Hornke H, Beller M, Junge K. Catal. Sci. Technol. 2019; 9: 1779
  • 196 Zhang S, Duan Y.-N, Qian Y, Tang W, Zhang R, Wen J, Zhang X. ACS Catal. 2021; 11: 13761
  • 197 Garduño JA, García JJ. ACS Catal. 2019; 9: 392
  • 198 Weber S, Veiros LF, Kirchner K. Adv. Synth. Catal. 2019; 361: 5412
  • 199 Chakraborty S, Milstein D. ACS Catal. 2017; 7: 3968
  • 200 Li H, Al-Dakhil A, Lupp D, Gholap SS, Lai Z, Liang L.-C, Huang K.-W. Org. Lett. 2018; 20: 6430
  • 201 Dai H, Guan H. ACS Catal. 2018; 8: 9125
  • 202 Chakraborty S, Brennessel WW, Jones WD. J. Am. Chem. Soc. 2014; 136: 8564
  • 203 Xu R, Chakraborty S, Yuan H, Jones WD. ACS Catal. 2015; 5: 6350
  • 204 Adam R, Cabrero-Antonino JR, Spannenberg A, Junge K, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2017; 56: 3216
  • 205 Papa V, Cao Y, Spannenberg A, Junge K, Beller M. Nat. Catal. 2020; 3: 135
  • 206 Zubar V, Borghs JC, Rueping M. Org. Lett. 2020; 22: 3974
  • 207 Fleischer S, Zhou S, Werkmeister S, Junge K, Beller M. Chem–Eur. J. 2013; 19: 4997
  • 208 Lu L.-Q, Li Y, Junge K, Beller M. J. Am. Chem. Soc. 2015; 137: 2763
  • 209 Liu C, Wang M, Liu S, Wang Y, Peng Y, Lan Y, Liu Q. Angew. Chem. Int. Ed. 2021; 60: 5108
  • 210 Liu C, Wang M, Xu Y, Li Y, Liu Q. Angew. Chem. Int. Ed. 2022; 61: e202 202 814
  • 211 Yang Z, Chen F, He Y, Yang N, Fan Q.-H. Angew. Chem. Int. Ed. 2016; 55: 13863