Yoshikai, N. : 2023 Science of Synthesis, 2023/3: Base-Metal Catalysis 2 DOI: 10.1055/sos-SD-239-00318
Base-Metal Catalysis 2

2.12 Asymmetric C—H Oxidation with Biologically Inspired Manganese and Iron Catalysts

More Information

Book

Editor: Yoshikai, N.

Authors: Adak, L. ; Aoki, S.; Banerjee, S. ; Bedford, R. B. ; Cheng, Z.; Costas, M. ; Gao, M.; Garai, B.; Ge, S. ; Gosmini, C. ; Hota, S. K.; Ilies, L. ; Jindal, A.; Kawanaka, Y.; Li, H. ; Li, M.; Liu, Q. ; Lu, Z. ; Mandal, R.; Matsunaga, S. ; Murarka, S. ; Nakamura, M. ; Nolla-Saltiel, R. ; Ollevier, T. ; Palone, A. ; Panda, S. P.; Sahoo, S.; Sang, J.; Schiltz, P.; Shenvi, R. A. ; Sundararaju, B. ; van der Puyl, V. ; Vicens, L. ; Wang, C. ; Wang, Y. ; Yang, X.; Yang, Y.; Yoshikai, N. ; Yoshino, T. ; Zeng, X. ; Zhang, G.

Title: Base-Metal Catalysis 2

Print ISBN: 9783132455030; Online ISBN: 9783132455054; Book DOI: 10.1055/b000000440

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

Enantioselective oxidation of aliphatic C—H bonds is the most straightforward and atom-economical approach to prepare chiral oxygenated hydrocarbon skeletons, which are ubiquitous in molecules of biological and industrial relevance. In Nature, this reaction is carried out by metalloenzymes with high levels of efficiency and selectivity. Due to the exquisite performance of enzymatic systems, their active site has served as inspiration for the exploration of artificial catalysts, such as those based on porphyrins or coordination compounds with tetradentate salen- or bis-amine-bis-pyridine-type ligands. Reviewed herein are the latest advances in enantioselective C—H oxidations using biologically inspired iron and manganese complexes.

 
  • 1 Teles JH, Partenheimer W, Jira R, Cavani F, Strukul G, Hage R, de Boer JW, Gooßen L, Mamone P, Kholdeeva OA, Applied Homogeneous Catalysis with Organometallic Compounds Cornils B, Herrmann WA, Beller M, Paciello R. Wiley-VCH Weinheim, Germany 2017; 465
  • 2 Sterckx H, Morel B, Maes BUW. Angew. Chem. Int. Ed. 2019; 58: 7946
  • 3 Green Oxidation in Organic Synthesis. Jiao N, Stahl SS. Wiley; Hoboken, NJ 2019
  • 4 White MC, Zhao J. J. Am. Chem. Soc. 2018; 140: 13988
  • 5 Newhouse T, Baran PS. Angew. Chem. Int. Ed. 2011; 50: 3362
  • 6 Company A, Costas M, In: Applied Homogeneous Catalysis with Organometallic Compounds Cornils B, Herrmann WA, Beller M, Paciello R. Wiley-VCH Weinheim, Germany 2017; 1525
  • 7 Capaldo L, Ravelli D, Fagnoni M. Chem. Rev. 2022; 122: 1875
  • 8 Bietti M. Angew. Chem. Int. Ed. 2018; 57: 16618
  • 9 Golden DL, Suh S.-E, Stahl SS. Nat. Rev. Chem. 2022; 6: 405
  • 10 Ruffoni A, Mykura RC, Bietti M, Leonori D. Nat. Synth. 2022; 1: 682
  • 11 Ravelli D, Fagnoni M, Fukuyama T, Nishikawa T, Ryu I. ACS Catal. 2018; 8: 701
  • 12 de Meijere A. Angew. Chem. Int. Ed. 1979; 18: 809
  • 13 Hung K, Condakes ML, Morikawa T, Maimone TJ. J. Am. Chem. Soc. 2016; 138: 16616
  • 14 Santana VCS, Fernandes MCV, Cappuccelli I, Richieri ACG, de Lucca ECJr. Synthesis 2022; 54: 5337
  • 15 Wein LA, Wurst K, Magauer T. Angew. Chem. Int. Ed. 2022; 61: e202 113 829
  • 16 Ye Q, Qu P, Snyder SA. J. Am. Chem. Soc. 2017; 139: 18428
  • 17 Burns AS, Rychnovsky SD. J. Am. Chem. Soc. 2019; 141: 13295
  • 18 Zhang C, Li Z.-L, Gu Q.-S, Liu X.-Y. Nat. Commun. 2021; 12: 475
  • 19 Mondal S, Dumur F, Gigmes D, Sibi MP, Bertrand MP, Nechab M. Chem. Rev. 2022; 122: 5842
  • 20 Cheng S, Li Q, Cheng X, Lin Y.-M, Gong L. Chin. J. Chem. 2022; 40: 2825
  • 21 Milan M, Bietti M, Costas M. Chem. Commun. (Cambridge) 2018; 54: 9559
  • 22 Costas M. Chem. Rec. 2021; 21: 4000
  • 23 Bryliakov KP. Chem. Rev. 2017; 117: 11406
  • 24 Doiuchi D, Uchida T. Synthesis 2021; 53: 3235
  • 25 Ortiz de Montellano PR. Chem. Rev. 2010; 110: 932
  • 26 Roiban G.-D, Reetz MT. Chem. Commun. (Cambridge) 2015; 51: 2208
  • 27 Zhang Y, Xiong Z, Li Y, Wilson M, Christensen KE, Jaques E, Hernández-Lladó P, Robertson J, Wong LL. Nat. Synth. 2022; 1: 936
  • 28 Zhang K, Yu A, Chu X, Li F, Liu J, Liu L, Bai W.-J, He C, Wang X. Angew. Chem. Int. Ed. 2022; 61: e202 204 290
  • 29 Wang Y, Lan D, Durrani R, Hollmann F. Curr. Opin. Chem. Biol. 2017; 37: 1
  • 30 Gomez de Santos P, Mateljak I, Hoang MD, Fleishman SJ, Hollmann F, Alcalde M. J. Am. Chem. Soc. 2023; 145: 3443
  • 31 Perry C, de los Santos ELC, Alkhalaf LM, Challis GL. Nat. Prod. Rep. 2018; 35: 622
  • 32 Barry SM, Challis GL. ACS Catal. 2013; 3: 2362
  • 33 Gao S.-S, Naowarojna N, Cheng R, Liu X, Liu P. Nat. Prod. Rep. 2018; 35: 792
  • 34 Baud D, Saaidi P.-L, Monfleur A, Harari M, Cuccaro J, Fossey A, Besnard M, Debard A, Mariage A, Pellouin V, Petit J.-L, Salanoubat M, Weissenbach J, de Berardinis V, Zaparucha A. ChemCatChem 2014; 6: 3012
  • 35 Chakrabarty S, Wang Y, Perkins JC, Narayan ARH. Chem. Soc. Rev. 2020; 49: 8137
  • 36 Li FZ, Zhang X, Renata H. Curr. Opin. Chem. Biol. 2019; 49: 25
  • 37 Groves JT, Viski P. J. Am. Chem. Soc. 1989; 111: 8537
  • 38 Srour H, Maux PL, Simonneaux G. Inorg. Chem. 2012; 51: 5850
  • 39 Hamada T, Irie R, Mihara J, Hamachi K, Katsuki T. Tetrahedron 1998; 54: 10017
  • 40 Hamachi K, Irie R, Katsuki T. Tetrahedron Lett. 1996; 37: 4979
  • 41 Vicens L, Olivo G, Costas M. ACS Catal. 2020; 10: 8611
  • 42 Chen J, Jiang Z, Fukuzumi S, Nam W, Wang B. Coord. Chem. Rev. 2020; 421: 213443
  • 43 Sun W, Sun Q. Acc. Chem. Res. 2019; 52: 2370
  • 44 Masferrer-Rius E, Li F, Lutz M, Klein Gebbink RJM. Catal. Sci. Technol. 2021; 11: 7751
  • 45 Talsi EP, Samsonenko DG, Ottenbacher RV, Bryliakov KP. ChemCatChem 2017; 9: 4580
  • 46 Ottenbacher RV, Talsi EP, Rybalova TV, Bryliakov KP. ChemCatChem 2018; 10: 5323
  • 47 Ottenbacher RV, Talsi EP, Bryliakov KP. J. Catal. 2020; 390: 170
  • 48 Qiu B, Xu D, Sun Q, Lin J, Sun W. Org. Lett. 2019; 21: 618
  • 49 Qiu B, Xu D, Sun Q, Miao C, Lee Y.-M, Li X.-X, Nam W, Sun W. ACS Catal. 2018; 8: 2479
  • 50 Sun Q, Sun W. Org. Lett. 2020; 22: 9529
  • 51 Frost JR, Huber SM, Breitenlechner S, Bannwarth C, Bach T. Angew. Chem. Int. Ed. 2015; 54: 691
  • 52 Burg F, Gicquel M, Breitenlechner S, Pöthig A, Bach T. Angew. Chem. Int. Ed. 2018; 57: 2953
  • 53 Burg F, Breitenlechner S, Jandl C, Bach T. Chem. Sci. 2020; 11: 2121
  • 54 Sun S, Yang Y, Zhao R, Zhang D, Liu L. J. Am. Chem. Soc. 2020; 142: 19346
  • 55 Sun S, Ma Y, Liu Z, Liu L. Angew. Chem. Int. Ed. 2021; 60: 176
  • 56 Mas-Balleste R, Que L. J. Am. Chem. Soc. 2007; 129: 15964
  • 57 Bigi MA, Reed SA, White MC. J. Am. Chem. Soc. 2012; 134: 9721
  • 58 Cianfanelli M, Olivo G, Milan M, Klein Gebbink RJM, Ribas X, Bietti M, Costas M. J. Am. Chem. Soc. 2020; 142: 1584
  • 59 Vicens L, Bietti M, Costas M. Angew. Chem. Int. Ed. 2021; 60: 4740
  • 60 Roiban G.-D, Agudo R, Reetz MT. Angew. Chem. Int. Ed. 2014; 53: 8659
  • 61 Peters MW, Meinhold P, Glieder A, Arnold FH. J. Am. Chem. Soc. 2003; 125: 13442
  • 62 Milan M, Bietti M, Costas M. ACS Cent. Sci. 2017; 3: 196
  • 63 Milan M, Bietti M, Costas M. Org. Lett. 2018; 20: 2720