Yoshikai, N. : 2023 Science of Synthesis, 2023/3: Base-Metal Catalysis 2 DOI: 10.1055/sos-SD-239-00266
Base-Metal Catalysis 2

2.17 Catalytic Nozaki–Hiyama–Kishi (NHK) Type Reactions

More Information

Book

Editor: Yoshikai, N.

Authors: Adak, L. ; Aoki, S.; Banerjee, S. ; Bedford, R. B. ; Cheng, Z.; Costas, M. ; Gao, M.; Garai, B.; Ge, S. ; Gosmini, C. ; Hota, S. K.; Ilies, L. ; Jindal, A.; Kawanaka, Y.; Li, H. ; Li, M.; Liu, Q. ; Lu, Z. ; Mandal, R.; Matsunaga, S. ; Murarka, S. ; Nakamura, M. ; Nolla-Saltiel, R. ; Ollevier, T. ; Palone, A. ; Panda, S. P.; Sahoo, S.; Sang, J.; Schiltz, P.; Shenvi, R. A. ; Sundararaju, B. ; van der Puyl, V. ; Vicens, L. ; Wang, C. ; Wang, Y. ; Yang, X.; Yang, Y.; Yoshikai, N. ; Yoshino, T. ; Zeng, X. ; Zhang, G.

Title: Base-Metal Catalysis 2

Print ISBN: 9783132455030; Online ISBN: 9783132455054; Book DOI: 10.1055/b000000440

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

The Nozaki–Hiyama–Kishi (NHK) reaction has been established to be an efficient and reliable means for carbon–carbon bond formation that has been proven in the synthesis of many complex molecules. However, the use of an equivalent of a reductant and the strict requirements in terms of the conditions have limited its wide application. The current research direction is to develop more readily available carbon radical precursors and complementary activation mechanisms; for example, the use of light (photocatalysis) and electricity have found preliminary success in realizing the catalytic cycle of chromium.

 
  • 1 Hein F. Ber. Dtsch. Chem. Ges. 1919; 52: 195
  • 2 Zeiss HH, Tsutsui M. J. Am. Chem. Soc. 1957; 79: 3062
  • 3 Herwig W, Zeiss HH. J. Am. Chem. Soc. 1957; 79: 6561
  • 4 Herwig W, Zeiss HH. J. Am. Chem. Soc. 1959; 81: 4798
  • 5 Fischer EO, Hafner WZ. Z. Naturforsch., B 1955; 10: 665
  • 6 Sneeden RPA. Organochromium Compounds. Academic; New York 1975
  • 7 Hanson JR. Synthesis 1974; 1
  • 8 Ho T.-L. Synthesis 1979; 1
  • 9 Anet FAL, Leblanc E. J. Am. Chem. Soc. 1957; 79: 2649
  • 10 Kochi JK, Davis DD. J. Am. Chem. Soc. 1964; 86: 5264
  • 11 Kochi JK, Singleton DM. J. Am. Chem. Soc. 1968; 90: 1582
  • 12 Okude Y, Hirano S, Hiyama T, Nozaki H. J. Am. Chem. Soc. 1977; 99: 3179
  • 13 Jin H, Uenishi J.-i, Christ WJ, Kishi Y. J. Am. Chem. Soc. 1986; 108: 5644
  • 14 Takai K, Tagashira M, Kuroda T, Oshima K, Utimoto K, Nozaki H. J. Am. Chem. Soc. 1986; 108: 6084
  • 15 Fürstner A, Shi N. J. Am. Chem. Soc. 1996; 118: 12349
  • 16 Tian Q, Zhang G. Synthesis 2016; 48: 4038
  • 17 Hargaden GC, Guiry PJ, In: Stereoselective Synthesis of Drugs and Natural Products Andrushko V, Andrushko N. Wiley Hoboken, NJ 2013; 1. 347
  • 18 Bandini M, Cozzi PG, Melchiorre P, Umani-Ronchi A. Angew. Chem. Int. Ed. 1999; 38: 3357
  • 19 Inoue M, Suzuki T, Nakada M. J. Am. Chem. Soc. 2003; 125: 1140
  • 20 Lee JY, Miller JJ, Hamilton SS, Sigman MS. Org. Lett. 2005; 7: 1837
  • 21 Deng Q.-H, Wadepohl H, Gade LH. Chem.–Eur. J. 2011; 17: 14922
  • 22 Xia G, Yamamoto H. J. Am. Chem. Soc. 2006; 128: 2554
  • 23 Choi H.-w, Nakajima K, Demeke D, Kang F.-A, Jun H.-S, Wan Z.-K, Kishi Y. Org. Lett. 2002; 4: 4435
  • 24 Shimada Y, Katsuki T. Chem. Lett. 2005; 34: 786
  • 25 McManus HA, Guiry PJ. J. Org. Chem. 2002; 67: 8566
  • 26 Berkessel A, Menche D, Sklorz CA, Schröder M, Paterson I. Angew. Chem. Int. Ed. 2003; 42: 1032
  • 27 Chen C, Tagami K, Kishi Y. J. Org. Chem. 1995; 60: 5386
  • 28 Sugimoto K, Aoyagi S, Kibayashi C. J. Org. Chem. 1997; 62: 2322
  • 29 Bandini M, Cozzi PG, Licciulli S, Umani-Ronchi A. Synthesis 2004; 409
  • 30 Inoue M, Suzuki T, Nakada M. Synlett 2003; 570
  • 31 Kurosu M, Lin M.-H, Kishi Y. J. Am. Chem. Soc. 2004; 126: 12248
  • 32 Zhang Z, Huang J, Ma B, Kishi Y. Org. Lett. 2008; 10: 3073
  • 33 Miller JJ, Sigman MS. J. Am. Chem. Soc. 2007; 129: 2752
  • 34 Deng Q.-H, Melen RL, Gade LH. Acc. Chem. Res. 2014; 47: 3162
  • 35 Inoue M, Suzuki T, Kinoshita A, Nakada M. Chem. Rec. 2008; 8: 169
  • 36 Wang B, Xie Y, Yang Q, Zhang G, Gu Z. Org. Lett. 2016; 18: 5388
  • 37 Xiong Y, Zhang G. Org. Lett. 2016; 18: 5094
  • 38 Chen W, Bai J, Zhang G. Adv. Synth. Catal. 2017; 359: 1227
  • 39 Ji H.-T, Tian Q.-S, Xiang J.-N, Zhang G.-Z. Chin. Chem. Lett. 2017; 28: 1182
  • 40 Guo R, Yang Q, Tian Q, Zhang G. Sci. Rep. 2017; 7: 4873
  • 41 Xiong Y, Zhang G. J. Am. Chem. Soc. 2018; 140: 2735
  • 42 Wang Z, Ji H, He W.-M, Xiong Y, Zhang G. Synthesis 2018; 50: 4915
  • 43 Zhang H, Chen B, Zhang G. Org. Lett. 2020; 22: 656
  • 44 Bai J, Chen B, Zhang G. Chin. J. Chem. 2020; 38: 1642
  • 45 Chen W, Yang Q, Zhou T, Tian Q, Zhang G. Org. Lett. 2015; 17: 5236
  • 46 Tian Q, Bai J, Chen B, Zhang G. Org. Lett. 2016; 18: 1828
  • 47 Bandini M, Cozzi PG, Umani-Ronchi A. Polyhedron 2000; 19: 537
  • 48 Inoue M, Nakada M. Org. Lett. 2004; 6: 2977
  • 49 Coeffard V, Aylward M, Guiry PJ. Angew. Chem. Int. Ed. 2009; 48: 9152
  • 50 Usanov DL, Yamamoto H. Angew. Chem. Int. Ed. 2010; 49: 8169
  • 51 Xia G, Yamamoto H. J. Am. Chem. Soc. 2007; 129: 496
  • 52 Harper KC, Sigman MS. Science (Washington, D. C.) 2011; 333: 1875
  • 53 Takai K, Kuroda T, Nakatsukasa S, Oshima K, Nozaki H. Tetrahedron Lett. 1985; 26: 5585
  • 54 Usanov DL, Yamamoto H. J. Am. Chem. Soc. 2011; 133: 1286
  • 55 Choi H.-w, Demeke D, Kang F.-A, Kishi Y, Nakajima K, Nowak P, Wan Z.-K, Xie C. Pure Appl. Chem. 2003; 75: 1
  • 56 Guo H, Dong C.-G, Kim D.-S, Urabe D, Wang J, Kim JT, Liu X, Sasaki T, Kishi Y. J. Am. Chem. Soc. 2009; 131: 15387
  • 57 Kim D.-S, Dong C.-G, Kim JT, Guo H, Huang J, Tiseni PS, Kishi Y. J. Am. Chem. Soc. 2009; 131: 15636
  • 58 Schwarz JL, Schäfers F, Tlahuext-Aca A, Lückemeier L, Glorius F. J. Am. Chem. Soc. 2018; 140: 12705
  • 59 Schäfers F, Quach L, Schwarz JL, Saladrigas M, Daniliuc CG, Glorius F. ACS Catal. 2020; 10: 11841
  • 60 Mitsunuma H, Tanabe S, Fuse H, Ohkubo K, Kanai M. Chem. Sci. 2019; 10: 3459
  • 61 Tanabe S, Mitsunuma H, Kanai M. J. Am. Chem. Soc. 2020; 142: 12374
  • 62 Schwarz JL, Kleinmans R, Paulisch TO, Glorius F. J. Am. Chem. Soc. 2020; 142: 2168
  • 63 Huang H.-M, Bellotti P, Daniliuc CG, Glorius F. Angew. Chem. Int. Ed. 2021; 60: 2464
  • 64 Gao Y, Hill DE, Hao W, McNicholas BJ, Vantourout JC, Hadt RG, Reisman SE, Blackmond DG, Baran PS. J. Am. Chem. Soc. 2021; 143: 9478