Yoshikai, N. : 2023 Science of Synthesis, 2023/3: Base-Metal Catalysis 2 DOI: 10.1055/sos-SD-239-00149
Base-Metal Catalysis 2

2.11 Iron-Based Chiral Lewis Acid Catalysts in Organic Synthesis

More Information

Book

Editor: Yoshikai, N.

Authors: Adak, L. ; Aoki, S.; Banerjee, S. ; Bedford, R. B. ; Cheng, Z.; Costas, M. ; Gao, M.; Garai, B.; Ge, S. ; Gosmini, C. ; Hota, S. K.; Ilies, L. ; Jindal, A.; Kawanaka, Y.; Li, H. ; Li, M.; Liu, Q. ; Lu, Z. ; Mandal, R.; Matsunaga, S. ; Murarka, S. ; Nakamura, M. ; Nolla-Saltiel, R. ; Ollevier, T. ; Palone, A. ; Panda, S. P.; Sahoo, S.; Sang, J.; Schiltz, P.; Shenvi, R. A. ; Sundararaju, B. ; van der Puyl, V. ; Vicens, L. ; Wang, C. ; Wang, Y. ; Yang, X.; Yang, Y.; Yoshikai, N. ; Yoshino, T. ; Zeng, X. ; Zhang, G.

Title: Base-Metal Catalysis 2

Print ISBN: 9783132455030; Online ISBN: 9783132455054; Book DOI: 10.1055/b000000440

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

Various synthetic applications of iron-based Lewis acid complexes are presented through their most noteworthy and groundbreaking applications in asymmetric catalysis. The iron Lewis acids are organized according to their structure, and then their reactivity. It has been reported that various chiral iron Lewis acids can be used in a broad range of synthetic transformations. Diverse categories of chiral ligands are used in asymmetric catalysis using chiral iron complexes, including N,N′-dioxides, bipyridines, oxazolines, Schiff bases, salen/salan-type structures, and aminopyridines.

 
  • 10 Wu W, Liu X, Zhang Y, Ji J, Huang T, Lin L, Feng X. Chem. Commun. (Cambridge) 2015; 51: 11646
  • 15 Plancq B, Lafantaisie M, Companys S, Maroun C, Ollevier T. Org. Biomol. Chem. 2013; 11: 7463
  • 21 Luo L, Yamamoto H. Eur. J. Org. Chem. 2014; 7803
  • 30 Shen J.-J, Zhu S.-F, Cai Y, Xu H, Xie X.-L, Zhou Q.-L. Angew. Chem. Int. Ed. 2014; 53: 13188
  • 40 Ge L, Zhou H, Chiou M.-F, Jiang H, Jian W, Ye C, Li X, Zhu X, Xiong H, Li Y, Song L, Zhang X, Bao H. Nat. Catal. 2021; 4: 28
  • 41 Lv D, Sun Q, Zhou H, Ge L, Qu Y, Li T, Ma X, Li Y, Bao H. Angew. Chem. Int. Ed. 2021; 60: 12455
  • 55 Egami H, Katsuki T. Synlett 2008; 1543
  • 60 Chen K.-G, Lu H, Zhou Y.-M, Wan X.-L, Wang H.-Y, Xu Z.-J, Guo H.-M, Che C.-M. J. Org. Chem. 2022; 87: 8289
  • 61 Ping Y.-J, Zhou Y.-M, Wu L.-L, Li Z.-R, Gu X, Wan X.-L, Xu Z.-J, Che C.-M. Org. Chem. Front. 2021; 8: 1910
  • 64 Cussó O, Garcia-Bosch I, Ribas X, Lloret-Fillol J, Costas M. J. Am. Chem. Soc. 2013; 135: 14871
  • 66 Cussó O, Cianfanelli M, Ribas X, Klein Gebbink RJM, Costas M. J. Am. Chem. Soc. 2016; 138: 2732