Fensterbank, L.  et al.: 2021 Science of Synthesis, 2020/4: Free Radicals: Fundamentals and Applications in Organic Synthesis 1 DOI: 10.1055/sos-SD-234-00064
Free Radicals: Fundamentals and Applications in Organic Synthesis 1

1.5 Photochemistry and Radical Generation: Approaches in Mechanism Elucidation

More Information

Book

Editors: Fensterbank, L. ; Ollivier, C.

Authors: André-Joyaux, E.; Bellanger, C.; Bertrand, M. P.; Besson, E. ; Bietti, M.; Braïda, B.; Cahoon, S. B.; Casano, G.; Chelli, S.; Chen, Y.; Chiba, S. ; Dénès, F. ; Derat, E.; Gastaldi, S. ; Gnägi, L.; Kaga, A.; Lakhdar, S. ; Liu, D.; Lu, X.-L.; Maestri, G. ; Melendez, C.; Ouari, O. ; Renaud, P. ; Rovis, T.; Serafino, A.; Shirakawa, E. ; Soulard, V.; Treacy, S. M.; Wang, B.; Wang, Y.-F.; Yoon, T. P.; Yorimitsu, H.; Zhang, F.-L.; Zhang, J.; Zhang, X.

Title: Free Radicals: Fundamentals and Applications in Organic Synthesis 1

Print ISBN: 9783132435520; Online ISBN: 9783132435537; Book DOI: 10.1055/b000000087

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.; Fürstner, A.; Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L

Type: Multivolume Edition

 


Abstract

The development of photocatalytic reactions has reemerged as an active area of research in organic synthesis. A large variety of synthetically valuable transformations have now been developed that take advantage of the ease by which photocatalysts generate a variety of open-shelled reactive intermediates. The study of the mechanisms of these reactions, however, is a challenge, especially in increasingly sophisticated reactions that often involve multiple steps and complex reaction mixtures. Multiple complementary techniques often need to be utilized in tandem in order to develop a detailed understanding of these reactions. The first part of this review outlines many of the most common techniques that are used to interrogate the initiation and product-formation steps of a photocatalytic transformation. The second part describes case studies that provide contextual examples of how photophysical, electrochemical, physical organic, and computational investigations can be used together to provide insights into the mechanisms of complex photocatalytic reactions.

 
  • 1 Ischay MA, Anzovino ME, Du J, Yoon TP. J. Am. Chem. Soc. 2008; 130: 12886
  • 2 Narayanam JMR, Tucker JW, Stephenson CRJ. J. Am. Chem. Soc. 2009; 131: 8756
  • 3 Nicewicz DA, MacMillan DWC. Science (Washington, D. C.) 2008; 322: 77
  • 4 Strieth-Kalthoff F, James MJ, Teders M, Pitzer L, Glorius F. Chem. Soc. Rev. 2018; 47: 7190
  • 5 Prier CK, Rankic DA, MacMillan DWC. Chem. Rev. 2013; 113: 5322
  • 6 Shaw MH, Twilton J, MacMillan DWC. J. Org. Chem. 2016; 81: 6898
  • 7 Narayanam JMR, Stephenson CRJ. Chem. Soc. Rev. 2011; 40: 102
  • 8 Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
  • 9 Arias-Rotondo DM, McCusker JK. Chem. Soc. Rev. 2016; 45: 5803
  • 10 Buzzetti L, Crisenza GEM, Melchiorre P. Angew. Chem. Int. Ed. 2019; 58: 3730
  • 11 Savateev A, Ghosh I, König B, Antonietti M. Angew. Chem. Int. Ed. 2018; 57: 15936
  • 12 Dhakshinamoorthy A, Li Z, Garcia H. Chem. Soc. Rev. 2018; 47: 8134
  • 13 Pitre SP, McTiernan CD, Scaiano JC. ACS Omega 2016; 1: 66
  • 14 Roth HG, Romero NA, Nicewicz DA. Synlett 2016; 27: 714
  • 15 Connelly NG, Geiger WE. Chem. Rev. 1996; 96: 877
  • 16 Balzani V, Ceroni P, Juris A. Photochemistry and Photophysics: Concepts, Research, Applications. Wiley-VCH; Weinheim, Germany 2014
  • 17 Lowry MS, Goldsmith JI, Slinker JD, Rohl R, Pascal RA, Malliaras GG, Bernhard S. Chem. Mater. 2005; 17: 5712
  • 18 Choi GJ, Zhu Q, Miller DC, Gu CJ, Knowles RR. Nature (London) 2016; 539: 268
  • 19 McClure LJ, Ford PC. J. Phys. Chem. 1992; 96: 6640
  • 20 Døssing A, Ryu CK, Kudo S, Ford PC. J. Am. Chem. Soc. 1993; 115: 5132
  • 21 Ye C, Li M, Luo J, Chen L, Tang Z, Pei J, Jiang L, Song Y, Zhu D. J. Mater. Chem. 2012; 22: 4299
  • 22 Bruner B, Walker MB, Ghimire MM, Zhang D, Selke M, Klausmeyer KK, Omary MA, Farmer PJ. Dalton Trans. 2014; 43: 11548
  • 23 Singh A, Teegardin K, Kelly M, Prasad KS, Krishnan S, Weaver JD. J. Organomet. Chem. 2015; 776: 51
  • 24 Horn EJ, Rosen BR, Baran PS. ACS Cent. Sci. 2016; 2: 302
  • 25 Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
  • 26 Elgrishi N, Rountree KJ, McCarthy BD, Rountree ES, Eisenhart TT, Dempsey JL. J. Chem. Educ. 2018; 95: 197
  • 27 Strieth-Kalthoff F, Henkel C, Teders M, Kahnt A, Knolle W, Gómez-Suárez A, Dirian K, Alex W, Bergander K, Daniliuc CG, Abel B, Guldi DM, Glorius F. Chem 2019; 5: 2183
  • 28 Shields BJ, Kudisch B, Scholes GD, Doyle AG. J. Am. Chem. Soc. 2018; 140: 3035
  • 29 Kubista M, Sjöback R, Eriksson S, Albinsson B. Analyst 1994; 119: 417
  • 30 Cismesia MA, Yoon TP. Chem. Sci. 2015; 6: 5426
  • 31 Pitre SP, McTiernan CD, Vine W, DiPucchio R, Grenier M, Scaiano JC. Sci. Rep. 2015; 5: 16397
  • 32 Suzuki K, Kobayashi A, Kaneko S, Takehira K, Yoshihara T, Ishida H, Shiina Y, Oishi S, Tobita S. Phys. Chem. Chem. Phys. 2009; 11: 9850
  • 33 Megerle U, Lechner R, König B, Riedle E. Photochem. Photobiol. Sci. 2010; 9: 1400
  • 34 Ji Y, DiRocco DA, Kind J, Thiele CM, Gschwind RM, Reibarkh M. ChemPhotoChem 2019; 3: 984
  • 35 Seegerer A, Nitschke P, Gschwind RM. Angew. Chem. Int. Ed. 2018; 57: 7493
  • 36 Nitschke P, Lokesh N, Gschwind RM. Prog. Nucl. Magn. Reson. Spectrosc. 2019; 114–115: 86
  • 37 Lin S, Ischay MA, Fry CG, Yoon TP. J. Am. Chem. Soc. 2011; 133: 19350
  • 38 Bauld NL, Bellville DJ, Harirchian B, Lorenz KT, Pabon Jr RA, Reynolds DW, Wirth DD, Chiou HS, Marsh BK. Acc. Chem. Res. 1987; 20: 371
  • 39 Ledwith A. Acc. Chem. Res. 1972; 5: 133
  • 40 Bock CR, Meyer TJ, Whitten DG. J. Am. Chem. Soc. 1974; 96: 4710
  • 41 Lewis FD, Howard DK, Oxman JD. J. Am. Chem. Soc. 1983; 105: 3344
  • 42 Guo H, Herdtweck E, Bach T. Angew. Chem. Int. Ed. 2010; 49: 7782
  • 43 Brimioulle R, Bauer A, Bach T. J. Am. Chem. Soc. 2015; 137: 5170
  • 44 Du J, Yoon TP. J. Am. Chem. Soc. 2009; 131: 14604
  • 45 Du J, Skubi KL, Schultz DM, Yoon TP. Science (Washington, D. C.) 2014; 344: 392
  • 46 Blum TR, Miller ZD, Bates DM, Guzei IA, Yoon TP. Science (Washington, D. C.) 2016; 354: 1391
  • 47 Daub ME, Jung H, Lee BJ, Won J, Baik M.-H, Yoon TP. J. Am. Chem. Soc. 2019; 141: 9543
  • 48 Tarantino KT, Liu P, Knowles RR. J. Am. Chem. Soc. 2013; 135: 10022
  • 49 Davies J, Booth SG, Essafi S, Dryfe RAW, Leonori D. Angew. Chem. Int. Ed. 2015; 54: 14017
  • 50 Davies J, Sheikh NS, Leonori D. Angew. Chem. Int. Ed. 2017; 56: 13361
  • 51 Romero NA, Nicewicz DA. J. Am. Chem. Soc. 2014; 136: 17024
  • 52 Benniston AC, Harriman A, Li P, Rostron JP, Van Ramesdonk HJ, Groeneveld MM, Zhang H, Verhoeven JW. J. Am. Chem. Soc. 2005; 127: 16054
  • 53 Tasker SZ, Standley EA, Jamison TF. Nature (London) 2014; 509: 299
  • 54 Heitz DR, Tellis JC, Molander GA. J. Am. Chem. Soc. 2016; 138: 12715
  • 55 Welin ER, Le C, Arias-Rotondo DM, McCusker JK, MacMillan DWC. Science (Washington, D. C.) 2017; 355: 380
  • 56 Shields BJ, Doyle AG. J. Am. Chem. Soc. 2016; 138: 12719
  • 57 Tian L, Till NA, Kudisch B, MacMillan DWC, Scholes GD. J. Am. Chem. Soc. 2020; 142: 4555
  • 58 Sun R, Qin Y, Ruccolo S, Schnedermann C, Costentin C, Nocera DG. J. Am. Chem. Soc. 2019; 141: 89
  • 59 Sun R, Qin Y, Nocera DG. Angew. Chem. Int. Ed. 2020; 59: 9527
  • 60 Bahamonde A, Melchiorre P. J. Am. Chem. Soc. 2016; 138: 8019
  • 61 Quint V, Morlet-Savary F, Lohier J.-F, Lalevée J, Gaumont A.-C, Lakhdar S. J. Am. Chem. Soc. 2016; 138: 7436
  • 62 Burg F, Bach T. J. Org. Chem. 2019; 84: 8815
  • 63 Müller C, Bauer A, Maturi MM, Cuquerella MC, Miranda MA, Bach T. J. Am. Chem. Soc. 2011; 133: 16689
  • 64 Alonso R, Bach T. Angew. Chem. Int. Ed. 2014; 53: 4368
  • 65 Tröster A, Alonso R, Bauer A, Bach T. J. Am. Chem. Soc. 2016; 138: 7808
  • 66 Vallavoju N, Selvakumar S, Jockusch S, Sibi MP, Sivaguru J. Angew. Chem. Int. Ed. 2014; 53: 5604
  • 67 Skubi KL, Kidd JB, Jung H, Guzei IA, Baik M.-H, Yoon TP. J. Am. Chem. Soc. 2017; 139: 17186
  • 68 Zheng J, Swords WB, Jung H, Skubi KL, Kidd JB, Meyer GJ, Baik M.-H, Yoon TP. J. Am. Chem. Soc. 2019; 141: 13625