Fensterbank, L.  et al.: 2021 Science of Synthesis, 2020/4: Free Radicals: Fundamentals and Applications in Organic Synthesis 1 DOI: 10.1055/sos-SD-234-00054
Free Radicals: Fundamentals and Applications in Organic Synthesis 1

1.4 Electron Catalysis

More Information

Book

Editors: Fensterbank, L. ; Ollivier, C.

Authors: André-Joyaux, E.; Bellanger, C.; Bertrand, M. P.; Besson, E. ; Bietti, M.; Braïda, B.; Cahoon, S. B.; Casano, G.; Chelli, S.; Chen, Y.; Chiba, S. ; Dénès, F. ; Derat, E.; Gastaldi, S. ; Gnägi, L.; Kaga, A.; Lakhdar, S. ; Liu, D.; Lu, X.-L.; Maestri, G. ; Melendez, C.; Ouari, O. ; Renaud, P. ; Rovis, T.; Serafino, A.; Shirakawa, E. ; Soulard, V.; Treacy, S. M.; Wang, B.; Wang, Y.-F.; Yoon, T. P.; Yorimitsu, H.; Zhang, F.-L.; Zhang, J.; Zhang, X.

Title: Free Radicals: Fundamentals and Applications in Organic Synthesis 1

Print ISBN: 9783132435520; Online ISBN: 9783132435537; Book DOI: 10.1055/b000000087

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.; Fürstner, A.; Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L

Type: Multivolume Edition

 


Abstract

An electron acts as a catalyst in the substitution reaction of aryl halides with diverse nucleophiles. Aryl halides, on receiving an electron, are activated as the radical anions, which react with aryl-, alkynyl-, and alkylmetals to give the cross-coupling products.

 
  • 1 Hartwig JF. Organotransition Metal Chemistry: From Bonding to Catalysis. University Science Books; Sausalito 2010
  • 2 Bunnett JF. Acc. Chem. Res. 1978; 11: 413
  • 3 Rossi RA, Pierini AB, Santiago AN. Org. React. (N. Y.) 1999; 54: 1
  • 4 Rossi RA, Pierini AB, Peñéñory AB. Chem. Rev. 2003; 103: 71
  • 5 Bardagí JI, Vaillard VA, Rossi RA, Encyclopedia of Radicals in Chemistry, Biology and Materials. Chatgilialoglu C, Studer A. Wiley; Chichester 2012. 1. 333
  • 6 Rossi RA, Guastavino JF, Budén ME, Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds. Mortier J. Wiley; Hoboken 2016: 243
  • 7 Shirakawa E, Hayashi T. Chem. Lett. 2012; 41: 130
  • 8 Studer A, Curran DP. Nat. Chem. 2014; 6: 765
  • 9 Studer A, Curran DP. Angew. Chem. Int. Ed. 2016; 55: 58
  • 10 Rossi RA, Budén ME, Guastavino JF, Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds. Mortier J. Wiley; Hoboken 2016: 219
  • 11 Wolf W, Kharasch N. J. Org. Chem. 1965; 30: 2493
  • 12 Curran DP, Keller AI. J. Am. Chem. Soc. 2006; 128: 13706
  • 13 Yanagisawa S, Ueda K, Taniguchi T, Itami K. Org. Lett. 2008; 10: 4673
  • 14 Liu W, Cao H, Zhang H, Zhang H, Chung KH, He C, Wang H, Kwong FY, Lei A. J. Am. Chem. Soc. 2010; 132: 16737
  • 15 Sun C.-L, Li H, Yu D.-G, Yu M, Zhou X, Lu X.-Y, Huang K, Zheng S.-F, Li B.-J, Shi Z.-J. Nat. Chem. 2010; 2: 1044
  • 16 Shirakawa E, Itoh K, Higashino T, Hayashi T. J. Am. Chem. Soc. 2010; 132: 15537
  • 17 Russell GA, Chen P, Kim BH, Rajaratnam R. J. Am. Chem. Soc. 1997; 119: 8795
  • 18 Wang C, Russell GA, Trahanovsky WS. J. Org. Chem. 1998; 63: 9956
  • 19 Studer A, Curran DP. Angew. Chem. Int. Ed. 2011; 50: 5018
  • 20 Zhou S, Anderson GM, Mondal B, Doni E, Ironmonger V, Kranz M, Tuttle T, Murphy JA. Chem. Sci. 2014; 5: 476
  • 21 Zhou S, Doni E, Anderson GM, Kane RG, MacDougall SW, Ironmonger VM, Tuttle T, Murphy JA. J. Am. Chem. Soc. 2014; 136: 17818
  • 22 Barham JP, Coulthard G, Emery KJ, Doni E, Cumine F, Cumine F, Nocera G, John MP, Berlouis LEA, McGuire T, Tuttle T, Murphy JA. J. Am. Chem. Soc. 2016; 138: 7402
  • 23 Liu W, Tian F, Wang X, Yu H, Bi Y. Chem. Commun. (Cambridge) 2013; 49: 2983
  • 24 Dewanji A, Murarka S, Curran DP, Studer A. Org. Lett. 2013; 15: 6102
  • 25 Wu Y, Choy PY, Kwong FY. Org. Biomol. Chem. 2014; 12: 6820
  • 26 Yang H, Chu D.-Z, Jiao L. Chem. Sci. 2018; 9: 1534
  • 27 Budén ME, Guastavino JF, Rossi RA. Org. Lett. 2013; 15: 1174
  • 28 Cheng Y, Gu X, Li P. Org. Lett. 2013; 15: 2664
  • 29 Kiriyama K, Shirakawa E. Chem. Lett. 2017; 46: 1757
  • 30 Shirakawa E, Zhang X, Hayashi T. Angew. Chem. Int. Ed. 2011; 50: 4671
  • 31 Sun C.-L, Gu Y.-F, Wang B, Shi Z.-J. Chem.–Eur. J. 2011; 17: 10844
  • 32 Rueping M, Leiendecker M, Das A, Poisson T, Bui L. Chem. Commun. (Cambridge) 2011; 47: 10629
  • 33 Zhang H, Shi R, Ding A, Lu L, Chen B, Lei A. Angew. Chem. Int. Ed. 2012; 51: 12542
  • 34 Kawamoto T, Sato A, Ryu I. Chem.–Eur. J. 2015; 21: 14764
  • 35 Shirakawa E, Hayashi Y, Itoh K, Watabe R, Uchiyama N, Konagaya W, Masui S, Hayashi T. Angew. Chem. Int. Ed. 2012; 51: 218
  • 36 Uchiyama N, Shirakawa E, Hayashi T. Chem. Commun. (Cambridge) 2013; 49: 364
  • 37 Haines BE, Wiest O. J. Org. Chem. 2014; 79: 2771
  • 38 Shirakawa E, Watabe R, Murakami T, Hayashi T. Chem. Commun. (Cambridge) 2013; 49: 5219
  • 39 Shirakawa E, Okura K, Uchiyama N, Murakami T, Hayashi T. Chem. Lett. 2014; 43: 922
  • 40 Murarka S, Studer A. Angew. Chem. Int. Ed. 2012; 51: 12362
  • 41 Shirakawa E, Tamakuni F, Kusano E, Uchiyama N, Konagaya W, Watabe R, Hayashi T. Angew. Chem. Int. Ed. 2014; 53: 521
  • 42 Minami H, Wang X, Wang C, Uchiyama M. Eur. J. Org. Chem. 2013; 7891
  • 43 Okura K, Shirakawa E. Eur. J. Org. Chem. 2016; 3043
  • 44 Okura K, Kawashima H, Tamakuni F, Nishida N, Shirakawa E. Chem. Commun. (Cambridge) 2016; 52: 14019
  • 45 Minami H, Saito T, Wang C, Uchiyama M. Angew. Chem. Int. Ed. 2015; 54: 4665
  • 46 He Q, Wang L, Liang Y, Zhang Z, Wnuk SF. J. Org. Chem. 2016; 81: 9422
  • 47 Okura K, Teranishi T, Yoshida Y, Shirakawa E. Angew. Chem. Int. Ed. 2018; 57: 7186
  • 48 Kiriyama K, Okura K, Tamakuni F, Shirakawa E. Chem.–Eur. J. 2018; 24: 4519