Fensterbank, L. et al.: 2021 Science of Synthesis, 2020/5: Free Radicals: Fundamentals and Applications in Organic Synthesis 2 DOI: 10.1055/sos-SD-233-00118
Free Radicals: Fundamentals and Applications in Organic Synthesis 2

2.6 Generation of Carbon-Centered Radicals by Photochemical Methods

More Information

Book

Editors: Fensterbank, L.; Ollivier, C.

Authors: Bartulovich, C. O.; Bolduc, T. G.; Chciuk, T. V.; Chemla, F.; Clark, K. F.; Cormier, M.; Das, A. ; Desage-El Murr, M. ; Dimitrova, D.; Fagnoni, M. ; Flowers, R. A. II; Fukuyama, T. ; Goddard, J.-P. ; Hessin, C.; Liu, Z.-Q. ; Lu, Y.; Mitsudo, K.; Murphy, J. A.; Pérez-Luna, A. ; Protti, S. ; Qin, T. ; Ravelli, D. ; Ren, Y.; Ryu, I. ; Sammis, G. M.; Sibi, M. P.; Subramaniann, H.; Suga, S.; Sumino, S. ; Thomson, B.; Yamago, S.; Zhou, M.

Title: Free Radicals: Fundamentals and Applications in Organic Synthesis 2

Print ISBN: 9783132435544; Online ISBN: 9783132435551; Book DOI: 10.1055/b000000086

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner (Editor-in-Chief), A.; Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

A selection of the recent literature describing the light-driven generation and subsequent exploitation of carbon-centered radicals for synthetic purposes is presented in this chapter. The aim is to showcase to organic (photo)chemistry practitioners the impressive potential of photocatalytic and photochemical strategies in terms of versatility, efficiency, and sustainability.

 
  • 1 Encyclopedia of Radicals in Chemistry, Biology and Materials. Chatgilialoglu C, Studer A. Wiley; Hoboken 2012
  • 2 Photoorganocatalysis in Organic Synthesis. Fagnoni M, Protti S, Ravelli D. World Scientific Publishing; Singapore 2019
  • 3 Visible Light Photocatalysis in Organic Chemistry. Stephenson CRJ, Yoon TP, MacMillan DWC. Wiley-VCH; Weinheim, Germany 2018
  • 4 Ravelli D, Protti S, Fagnoni M. Chem. Rev. 2016; 116: 9850
  • 5 Chemical Photocatalysis. König B. De Gruyter; Berlin 2013
  • 6 Photochemically-Generated Intermediates in Synthesis. Albini A, Fagnoni M. Wiley; Hoboken 2013
  • 7 Saraiva MF, Couri MRC, Le Hyaric M, de Almeida MV. Tetrahedron 2009; 65: 3563
  • 8 Rossi RA, Pierini AB, Peñéñory AB. Chem. Rev. 2003; 103: 71
  • 9 Staveness D, Bosque I, Stephenson CRJ. Acc. Chem. Res. 2016; 49: 2295
  • 10 Goddard J.-P, Ollivier C, Fensterbank L. Acc. Chem. Res. 2016; 49: 1924
  • 11 Douglas JJ, Sevrin MJ, Stephenson CRJ. Org. Process Res. Dev. 2016; 20: 1134
  • 12 Hoffmann N. Eur. J. Org. Chem. 2017; 1982
  • 13 Xie J, Jin H, Hashmi ASK. Chem. Soc. Rev. 2017; 46: 5193
  • 14 Savateev A, Antonietti M. ACS Catal. 2018; 8: 9790
  • 15 Silvi M, Melchiorre P. Nature (London) 2018; 554: 41
  • 16 Murarka S. Adv. Synth. Catal. 2018; 360: 1735
  • 17 Bogdos MK, Pinard E, Murphy JA. Beilstein J. Org. Chem. 2018; 14: 2035
  • 18 Science of Synthesis: Photocatalysis in Organic Synthesis. König B. Thieme; Stuttgart 2019
  • 19 Reiser O. Acc. Chem. Res. 2016; 49: 1990
  • 20 Levin MD, Kim S, Toste FD. ACS Cent. Sci. 2016; 2: 293
  • 21 Lee KN, Ngai M.-Y. Chem. Commun. (Cambridge) 2017; 53: 13093
  • 22 Suzuki K, Mizuno N, Yamaguchi K. ACS Catal. 2018; 8: 10809
  • 23 Riente P, Noël T. Catal. Sci. Technol. 2019; 9: 5186
  • 24 Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
  • 25 Ravelli D, Fagnoni M. ChemCatChem 2012; 4: 169
  • 26 Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
  • 27 Huang H, Jia K, Chen Y. ACS Catal. 2016; 6: 4983
  • 28 Tellis JC, Kelly CB, Primer DN, Jouffroy M, Patel NR, Molander GA. Acc. Chem. Res. 2016; 49: 1429
  • 29 Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DWC. Nat. Rev. Chem. 2017; 1: 0052
  • 30 Zhang L, Meggers E. Acc. Chem. Res. 2017; 50: 320
  • 31 Protti S, Fagnoni M, Ravelli D. ChemCatChem 2015; 7: 1516
  • 32 Ravelli D, Protti S, Fagnoni M. Acc. Chem. Res. 2016; 49: 2232
  • 33 Capaldo L, Ravelli D. Eur. J. Org. Chem. 2017; 2056
  • 34 Zhang P, Le C, MacMillan DWC. J. Am. Chem. Soc. 2016; 138: 8084
  • 35 Stateman LM, Nakafuku KM, Nagib DA. Synthesis 2018; 50: 1569
  • 36 Morcillo SP. Angew. Chem. Int. Ed. 2019; 58: 14044
  • 37 Lan X.-W, Wang N.-X, Xing Y. Eur. J. Org. Chem. 2017; 5821
  • 38 Gao P, Gu Y.-R, Duan X.-H. Synthesis 2017; 49: 3407
  • 39 Boubertakh O, Goddard J.-P. Eur. J. Org. Chem. 2017; 2017: 2072
  • 40 Martelli G, Spagnolo P, Tiecco M. J. Chem. Soc. B 1970; 1413
  • 41 Xie J, Shi S, Zhang T, Mehrkens N, Rudolph M, Hashmi ASK. Angew. Chem. Int. Ed. 2015; 54: 6046
  • 42 Ni K, Meng L.-G, Wang K, Wang L. Org. Lett. 2018; 20: 2245
  • 43 Arora A, Weaver JD. Acc. Chem. Res. 2016; 49: 2273
  • 44 Majek M, Jacobi von Wangelin A. Acc. Chem. Res. 2016; 49: 2316
  • 45 Ghosh I, Marzo L, Das A, Shaikh R, König B. Acc. Chem. Res. 2016; 49: 1566
  • 46 Qiu D, Lian C, Mao J, Ding Y, Liu Z, Wei L, Fagnoni M, Protti S. Adv. Synth. Catal. 2019; 361: 5239
  • 47 Crespi S, Protti S, Fagnoni M. J. Org. Chem. 2016; 81: 9612
  • 48 Fukuyama T, Fujita Y, Miyoshi H, Ryu I, Kao S.-C, Wu Y.-K. Chem. Commun. (Cambridge) 2018; 54: 5582
  • 49 Chatgilialoglu C, Crich D, Komatsu M, Ryu I. Chem. Rev. 1999; 99: 1991
  • 50 Chen X.-Y, Enders D. Angew. Chem. Int. Ed. 2019; 58: 6488
  • 51 Raviola C, Protti S, Ravelli D, Fagnoni M. Green Chem. 2019; 21: 748
  • 52 Banerjee A, Lei Z, Ngai M.-Y. Synthesis 2019; 51: 303
  • 53 Meanwell M, Lehmann J, Eichenberger M, Martin RE, Britton R. Chem. Commun. (Cambridge) 2018; 54: 9985
  • 54 Carey JS, Laffan D, Thomson C, Williams MT. Org. Biomol. Chem. 2006; 4: 2337
  • 55 Jouffroy M, Kong J. Chem.–Eur. J. 2019; 25: 2217
  • 56 Mazzarella D, Magagnano G, Schweitzer-Chaput B, Melchiorre P. ACS Catal. 2019; 9: 5876
  • 57 Vu MD, Das M, Guo A, Ang Z.-E, Dokić M, Soo HS, Liu X.-W. ACS Catal. 2019; 9: 9009
  • 58 Lu F.-D, Liu D, Zhu L, Lu L.-Q, Yang Q, Zhou Q.-Q, Wei Y, Lan Y, Xiao W.-J. J. Am. Chem. Soc. 2019; 141: 6167
  • 59 Milligan JA, Phelan JP, Badir SO, Molander GA. Angew. Chem. Int. Ed. 2019; 58: 6152
  • 60 Jamison CR, Overman LE. Acc. Chem. Res. 2016; 49: 1578
  • 61 Ravelli D, Fagnoni M, Fukuyama T, Nishikawa T, Ryu I. ACS Catal. 2018; 8: 701
  • 62 Capaldo L, Merli D, Fagnoni M, Ravelli D. ACS Catal. 2019; 9: 3054
  • 63 Nakajima K, Miyake Y, Nishibayashi Y. Acc. Chem. Res. 2016; 49: 1946
  • 64 Morris SA, Wang J, Zheng N. Acc. Chem. Res. 2016; 49: 1957
  • 65 Flodén NJ, Trowbridge A, Willcox D, Walton SM, Kim Y, Gaunt MJ. J. Am. Chem. Soc. 2019; 141: 8426
  • 66 Xia Q, Dong J, Song H, Wang Q. Chem.–Eur. J. 2019; 25: 2949
  • 67 Zhu K, Ohtani T, Tripathi CB, Uraguchi D, Ooi T. Chem. Lett. 2019; 48: 715
  • 68 Raviola C, Ravelli D. Synlett 2019; 30: 803
  • 69 Chatterjee T, Iqbal N, You Y, Cho EJ. Acc. Chem. Res. 2016; 49: 2284
  • 70 Raviola C, Protti S, Ravelli D, Late-Stage Fluorination of Bioactive Molecules and Biologically-Relevant Substrates. Postigo A. Elsevier; Amsterdam 2019: 183
  • 71 Pan X, Xia H, Wu J. Org. Chem. Front. 2016; 3: 1163
  • 72 Postigo A. Eur. J. Org. Chem. 2018; 2018: 6391
  • 73 Torti E, Protti S, Fagnoni M. Chem. Commun. (Cambridge) 2018; 54: 4144
  • 74 Zhang W, Zhu Y, Zhang L, Luo S. Chin. J. Chem. 2018; 36: 716
  • 75 Nicewicz DA, MacMillan DWC. Science (Washington, D. C.) 2008; 322: 77
  • 76 Silvi M, Arceo E, Jurberg ID, Cassani C, Melchiorre P. J. Am. Chem. Soc. 2015; 137: 6120
  • 77 Arceo E, Jurberg ID, Álvarez-Fernández A, Melchiorre P. Nat. Chem. 2013; 5: 750
  • 78 Zhu X, Lin Y, Sun Y, Beard MC, Yan Y. J. Am. Chem. Soc. 2019; 141: 733