de Vries, J. G.: 2018 Science of Synthesis, 2017/6: Catalytic Reduction in Organic Synthesis 2 DOI: 10.1055/sos-SD-227-00139
Catalytic Reduction in Organic Synthesis 2

2.7 Reduction of Nitro Compounds to Amines, Azo Compounds, Hydroxylamines, and Oximes, and Reduction of N-Oxides to Amines

More Information

Book

Editor: de Vries, J. G.

Authors: Ayad, T. ; Bagal, D.; Besson, M.; Bhanage, B. ; Ciszek, B.; Claver, C.; Cole-Hamilton, D.; Fleischer, I. ; Hinze, S.; Ikariya, T.; Junge, K.; Kalck, P.; Kamer, P.; Kayaki, Y. ; Llopis, Q.; Matsunami, A.; Monguchi, Y.; Peñafiel, I.; Phansavath, P.; Pinel, C.; Puylaert, P.; Ratovelomanana-Vidal, V. ; Sajiki, H.; Savini, A.; Shi, Y.; Steinfeldt, N.; Urrutigoity, M.

Title: Catalytic Reduction in Organic Synthesis 2

Print ISBN: 9783132406261; Online ISBN: 9783132406308; Book DOI: 10.1055/b-005-145235

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Koch, G.; Molander, G. A.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.

Type: Multivolume Edition

 


Abstract

Various catalytic strategies are discussed for the reduction of both aromatic and aliphatic nitro functionalities to the corresponding amines, including homogeneous and heterogeneous (transfer) hydrogenations, as well as the water–gas shift reaction. Chemoselectivity with respect to other reducible moieties (carbonyls, alkenes, alkynes) and hydrodehalogenation is taken into account. The isolation of azobenzenes, N-substituted hydroxylamines, and oximes, which are typically considered intermediates or byproducts in nitro reductions, is included as well. Finally, developments in the deoxygenation of N-oxides are addressed briefly.

 
  • 1 Gard J.-C, Lessard J, Mugnier Y. Electrochim. Acta 1993; 38: 677
  • 2 Dixon DJ, Pando Morejón O, In Comprehensive Organic Synthesis, 2nd ed.. Knochel P, Molander GA. Elsevier; Amsterdam 2014. Vol. 8, p 479.
  • 3 Kadam HK, Tilve SG. RSC Adv. 2015; 5: 83391
  • 4 Scholz U, Schlummer B. Science of Synthesis 2007; 31: 1618
  • 5 Margaretha . Science of Synthesis 2009; 40: 119
  • 6 Stiles M, Finkbeiner HL. J. Am. Chem. Soc. 1959; 81: 505
  • 7 Hollinshead SP, Trudell ML, Skolnick P, Cook JM. J. Med. Chem. 1990; 33: 1062
  • 8 Secrist JA, Logue MW. J. Org. Chem. 1972; 37: 335
  • 9 Knifton JF. J. Org. Chem. 1975; 40: 519
  • 10 Watanabe M, Murata K, Ikariya T. J. Org. Chem. 2002; 67: 1712
  • 11 Johnson PY, Pan R, Wen JQ, Halfman CJ. J. Org. Chem. 1981; 46: 2049
  • 12 Li M, Hu L, Cao X, Hong H, Lu J, Gu H. Chem.–Eur. J. 2011; 17: 2763
  • 13 Lakshmi Kantam M, Chakravarti R, Pal U, Sreedhar B, Bhargavab S. Adv. Synth. Catal. 2008; 350: 822
  • 14 Hemantha HP, Sureshbabu VV. Org. Biomol. Chem. 2011; 9: 2597
  • 15 Khurana JM, Gogia A. Org. Prep. Proced. Int. 1997; 29: 1
  • 16 Satoh T, Suzuki S, Suzuki Y, Miyaji Y, Imai Z. Tetrahedron Lett. 1969; 10: 4555
  • 17 Petrini M, Ballini R, Rosini G. Synthesis 1987; 713
  • 18 Göksu H, Çelik B, Yıldız Y, Şen F, Kılbaş B. ChemistrySelect 2016; 1: 2366
  • 19 Deprez-Poulain R, Willand N, Boutillon C, Nowogrocki G, Azaroual N, Deprez B. Tetrahedron Lett. 2004; 45: 5287
  • 20 Adams JP. J. Chem. Soc., Perkin Trans. 1 2002; 2586
  • 21 Ram S, Ehrenkaufer RE. Tetrahedron Lett. 1984; 25: 3415
  • 22 Somei M, Wakida M, Ohta T. Chem. Pharm. Bull. 1988; 36: 1162
  • 23 Sturgess MA, Yarberry DJ. Tetrahedron Lett. 1993; 34: 4743
  • 24 Guyon C, Métay E, Popowycz F, Lemaire M. Org. Biomol. Chem. 2015; 13: 7879
  • 25 Orlandi M, Tosi F, Bonsignore M, Benaglia M. Org. Lett. 2015; 17: 3941
  • 26 Park S, Lee IS, Park J. Org. Biomol. Chem. 2013; 11: 395
  • 27 Porwal D, Oestreich M. Eur. J. Org. Chem. 2016; 2016: 3307
  • 28 Damodara D, Arundhathi R, Ramesh Babu TV, Legan MK, Kumpaty HJ, Likhar PR. RSC Adv. 2014; 4: 22567
  • 29 Kende AS, Mendoza JS. Tetrahedron Lett. 1991; 32: 1699
  • 30 Ankner T, Hilmersson G. Tetrahedron Lett. 2007; 48: 5707
  • 31 Gkizis PL, Stratakis M, Lykakis IN. Catal. Commun. 2013; 36: 48
  • 32 Rai RK, Mahata A, Mukhopadhyay S, Gupta S, Li P.-Z, Nguyen KT, Zhao Y, Pathak B, Singh SK. Inorg. Chem. 2014; 53: 2904
  • 33 Cantillo D, Moghaddam MM, Kappe CO. J. Org. Chem. 2013; 78: 4530
  • 34 Srivastava S, Dagur MS, Ali A, Gupta R. Dalton Trans. 2015; 44: 17453
  • 35 Gowda S, Gowda DC. Tetrahedron 2002; 58: 2211
  • 36 He L, Wang L.-C, Sun H, Ni J, Cao Y, He H.-Y, Fan K.-N. Angew. Chem. Int. Ed. 2009; 48: 9538
  • 37 Ren R, Ma J. RSC Adv. 2015; 5: 74802
  • 38 Saito Y, Ishitani H, Kobayashi S. Asian J. Org. Chem. 2016; 5: 1124
  • 39 Weissermel K, Arpe H.-J. Industrielle Organische Chemie, 5th ed.. Wiley-VCH; Weinheim, Germany 1998
  • 40 Cartolano AR, Vedage GA. In Kirk-Othmer Encyclopedia of Chemical Technology. Wiley; New York 2004. Vol. 2, p 476.
  • 41 Downing RS, Kunkeler PJ, van Bekkum H. Catal. Today 1997; 37: 121
  • 42 Blaser H.-U, Steiner H, Studer M. ChemCatChem 2009; 1: 210
  • 43 Rylander PN. Hydrogenation Methods (Best Synthetic Methods). Academic; London 1985, p 104
  • 44 Pietrowski M. Curr. Org. Synth. 2012; 9: 470
  • 45 Misal Castro LC, Li H, Sortais J.-B, Darcel C. Green Chem. 2015; 17: 2283
  • 46 Lara P, Philippot K. Catal. Sci. Technol. 2014; 4: 2445
  • 47 Siegrist U, Baumeister P, Blaser H.-U, Studer M. Chem. Ind. (Dekker) 1998; 75: 207
  • 48 Blaser H.-U. Top. Catal. 2010; 53: 997
  • 49 Loos P, Alex H, Hassfeld J, Lovis K, Platzek J, Steinfeldt N, Hübner S. Org. Process Res. Dev. 2016; 20: 452
  • 50 Kasparian AJ, Savarin C, Allgeier AM, Walker SD. J. Org. Chem. 2011; 76: 9841
  • 51 Corma A, Serna P. Science (Washington, D. C.) 2006; 313: 332
  • 52 Corma A, Concepción P, Serna P. Angew. Chem. Int. Ed. 2007; 46: 7266
  • 53 Jagadeesh RV, Surkus A.-E, Junge H, Pohl M.-M, Radnik J, Rabeah J, Huan H, Schünemann V, Brückner A, Beller M. Science (Washington, D. C.) 2013; 342: 1073
  • 54 Jagadeesh RV, Stemmler T, Surkus A.-E, Junge H, Junge K, Beller M. Nat. Protoc. 2015; 10: 548
  • 55 Wienhöfer G, Baseda-Krüger M, Ziebart C, Westerhaus FA, Baumann W, Jackstell R, Junge K, Beller M. Chem. Commun. (Cambridge) 2013; 49: 9089
  • 56 Jackstell R, Ziebart C, Federsel C, Beller M. US 20 150 105 571, 2015
  • 57 Ziebart C, Federsel C, Anbarasan P, Jackstell R, Baumann W, Spannenberg A, Beller M. J. Am. Chem. Soc. 2012; 134: 20701
  • 58 Hartley JG, Venanzi LM, Goodall DC. J. Chem. Soc. 1963; 3930
  • 59 Robertson A, Matsumoto T, Ogo S. Dalton Trans. 2011; 40: 10304
  • 60 He Y.-M, Fan Q.-H. ChemCatChem 2015; 7: 398
  • 61 Li Y.-Y, Yu S.-L, Shen W.-Y, Gao J.-X. Acc. Chem. Res. 2015; 48: 2587
  • 62 Wang D, Astruc D. Chem. Rev. 2015; 115: 6621
  • 63 Landesberg JM, Katz L, Olsen C. J. Org. Chem. 1972; 37: 930
  • 64 Shee S, Paul B, Kundu S. ChemistrySelect 2017; 2: 1705
  • 65 Gawande MB, Guo H, Rathi AK, Branco PS, Chen Y, Varma RS, Peng D.-L. RSC Adv. 2013; 3: 1050
  • 66 Farhadi S, Siadatnasab F. J. Mol. Catal. A: Chem. 2011; 339: 108
  • 67 Farhadi S, Kazem M, Siadatnasab F. Polyhedron 2011; 30: 606
  • 68 Jia W.-G, Ling S, Zhang H.-N, Sheng E.-H, Lee R. Organometallics 2018; 37: 40
  • 69 Gawande MB, Rathi AK, Branco PS, Nogueira ID, Velhinho A, Shrikhande JJ, Indulkar UU, Jayaram RV, Ghumman CAA, Bundaleski N, Teodoro OMND. Chem.–Eur. J. 2012; 18: 12628
  • 70 Wienhöfer G, Sorribes I, Boddien A, Westerhaus F, Junge K, Junge H, Llusar R, Beller M. J. Am. Chem. Soc. 2011; 133: 12875
  • 71 Tafesh AM, Weiguny J. Chem. Rev. 1996; 96: 2035
  • 72 Rück-Braun K, Dietrich S, Kempa S, Priewisch B. Science of Synthesis 2007; 31: 1425
  • 73 Merino E. Chem. Soc. Rev. 2011; 40: 3835
  • 74 Léonard E, Mangin F, Villette C, Billamboz M, Len C. Catal. Sci. Technol. 2016; 6: 379
  • 75 Kubik S. Science of Synthesis 2010; 41: 507
  • 76 Grirrane A, Corma A, García H. Science (Washington, D. C.) 2008; 322: 1661
  • 77 Grirrane A, Corma A, García H. Nat. Protoc. 2010; 5: 429
  • 78 Combita D, Concepción P, Corma A. J. Catal. 2014; 311: 339
  • 79 Liu X, Li H.-Q, Ye S, Liu Y.-M, He H.-Y, Cao Y. Angew. Chem. Int. Ed. 2014; 53: 7624
  • 80 Hu L, Cao X, Shi L, Qi F, Guo Z, Lu J, Gu H. Org. Lett. 2011; 13: 5640
  • 81 Wang J, Hu L, Cao X, Lu J, Li X, Gu H. RSC Adv. 2013; 3: 4899
  • 82 Hu L, Cao X, Chen L, Zheng J, Lu J, Sun X, Gu H. Chem. Commun. (Cambridge) 2012; 48: 3445
  • 83 Liu W, Zhang L, Yan W, Liu X, Yang X, Miao S, Wang W, Wang A, Zhang T. Chem. Sci. 2016; 7: 5758
  • 84 Kim JH, Park JH, Chung YK, Park KH. Adv. Synth. Catal. 2012; 354: 2412
  • 85 Cavani F, Trifirò F, Vaccari A. Catal. Today 1991; 11: 173
  • 86 Liu X, Ding R.-S, He L, Liu Y.-M, Cao Y, He H.-Y, Fan K.-N. ChemSusChem 2013; 6: 604
  • 87 Liu X, Ye S, Li H.-Q, Liu Y.-M, Cao Y, Fan K.-N. Catal. Sci. Technol. 2013; 3: 3200
  • 88 Morales-Guio CG, Yuranov I, Kiwi-Minsker L. Top. Catal. 2014; 57: 1526
  • 89 Wang M.-M, He L, Liu Y.-M, Cao Y, He H.-Y, Fan K.-N. Green Chem. 2011; 13: 602
  • 90 Campo B, Santori G, Petit C, Volpe M. Appl. Catal., A 2009; 359: 79
  • 91 Geffken D, Köllner MA. Science of Synthesis 2009; 40: 959
  • 92 Takenaka Y, Kiyosu T, Choi J.-C, Sakakura T, Yasuda H. Green Chem. 2009; 11: 1385
  • 93 Boymans EH, Witte PT, Vogt D. Catal. Sci. Technol. 2015; 5: 176
  • 94 Takenaka Y, Kiyosu T, Mori G, Choi J.-C, Sakakura T, Yasuda H. Catal. Today 2011; 164: 580
  • 95 Takenaka Y, Kiyosu T, Choi J.-C, Sakakura T, Yasuda H. ChemSusChem 2010; 3: 1166
  • 96 Chiba S, Narasaka K. Science of Synthesis Knowledge Updates 2011; 4: 445
  • 97 Papadas IT, Fountoulaki S, Lykakis IN, Armatas GS. Chem.–Eur. J. 2016; 22: 4600
  • 98 Ren Y, Wei H, Yin G, Zhang L, Wang A, Zhang T. Chem. Commun. (Cambridge) 2017; 53: 1969
  • 99 Shimizu K.-I, Yamamoto T, Tai Y, Satsuma A. J. Mol. Catal. A: Chem. 2011; 345: 54
  • 100 Liu P.-L, Zhang H.-K, Liu S.-H, Yao Z.-J, Hao F, Liao H.-G, You K.-Y, Luo H.-A. ChemCatChem 2013; 5: 2932
  • 101 Nishiyama Y, Ikeda S, Nishida H, Umeda R. Bull. Chem. Soc. Jpn. 2010; 83: 816
  • 102 Cai S, Zhang S, Zhao Y, Wang DZ. Org. Lett. 2013; 15: 2660
  • 103 Wang Y, Zhang L. Synthesis 2015; 47: 289
  • 104 Mfuh AM, Larionov OV. Curr. Med. Chem. 2015; 22: 2819
  • 105 Kokatla HP, Thomson PF, Bae S, Doddi VR, Lakshman MK. J. Org. Chem. 2011; 76: 7842
  • 106 Gupta S, Sureshbabu P, Singh AK, Sabiah S, Kandasamy J. Tetrahedron Lett. 2017; 58: 909
  • 107 Sousa SCA, Fernandes AC. Coord. Chem. Rev. 2015; 284: 67
  • 108 García N, García-García P, Fernández-Rodríguez MA, García D, Pedrosa MR, Arnáiz FJ, Sanz R. Green Chem. 2013; 15: 999
  • 109 García N, García-García P, Fernández-Rodríguez MA, Rubio R, Pedrosa MR, Arnáiz FJ, Sanz R. Adv. Synth. Catal. 2012; 354: 321
  • 110 Rubio-Presa R, Fernández-Rodríguez MA, Pedrosa MR, Arnáiz FJ, Sanz R. Adv. Synth. Catal. 2017; 359: 1752
  • 111 Sanz R, Escribano J, Aguado R, Pedrosa MR, Arnáiz FJ. Synthesis 2004; 1629