de Vries, J. G.: 2018 Science of Synthesis, 2017/5: Catalytic Reduction in Organic Synthesis 1 DOI: 10.1055/sos-SD-226-00114
Catalytic Reduction in Organic Synthesis 1

1.9 Hydrogenation of Carbon Dioxide

More Information

Book

Editor: de Vries, J. G.

Authors: Bonrath, W.; Cazin, C. ; Chen, Z.-P.; Dai, X.; de Vries, J. G.; Ding, K. ; Ghosh, B.; Hudson, R.; Kaneda, K. ; Li, Y.; Lv, H. ; Maleczka, Jr., R.; Medlock, J.; Mitsudome, T.; Moores, A.; Müller, M.-A.; Nahra, F. ; Nakagawa, Y.; Poechlauer, P.; Ravasio, N.; Shi, F.; Tamura, M.; Tan, X.; Tin, S.; Tomishige, K.; Zaccheria, F.; Zhang, X.; Zhou, Y.-G. ; Zimmermann, A.

Title: Catalytic Reduction in Organic Synthesis 1

Print ISBN: 9783132406216; Online ISBN: 9783132406254; Book DOI: 10.1055/b-005-145236

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Koch, G.; Molander, G. A.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.

Type: Multivolume Edition

 


Abstract

Carbon dioxide is an economical, safe, and renewable C1 source. This attractive C1 building block is mainly used in the synthesis of organic chemicals, materials, and carbohydrates. As a feedstock to produce chemicals and fuel derivatives, carbon dioxide utilization will most certainly become an important tool in the quest for more sustainable chemistry. The atom-economical hydrogenation of carbon dioxide using dihydrogen offers a unique opportunity to achieve that goal. The main products of carbon dioxide hydrogenation or reduction fall into two categories: fuels and chemicals. The main topics discussed in this chapter are the hydrogenation of carbon dioxide to formic acid, methanol, and methane, as well as the reductive methylation of amines and C—H bonds. Both homogeneous and heterogeneous catalytic metal systems are reviewed herein.

 
  • 1 Jessop PG, Joó F, Tai C.-C. Coord. Chem. Rev. 2004; 248: 2425
  • 2 Omae I. Catal. Today 2006; 115: 33
  • 3 Sakakura T, Choi JC, Yasuda H. Chem. Rev. 2007; 107: 2365
  • 4 Aresta M, Dibenedetto A. Dalton Trans. 2007; 28: 2975
  • 5 Sakakura T, Kohno K. Chem. Commun. (Cambridge) 2009; 1312
  • 6 Aresta M, In Activation of Small Molecules: Organometallic and Bioinorganic Perspectives Tolman WB, ED. Wiley-VCH Weinheim, Germany 2006; p  1
  • 7 Wang W, Wang S, Ma X, Gong J. Chem. Soc. Rev. 2011; 40: 3703
  • 8 DellʼAmico DB, Calderazzo F, Labella L, Marchetti F, Pampaloni G. Chem. Rev. 2003; 103: 3857
  • 9 Riduan SN, Zhang Y. Dalton Trans. 2010; 39: 3347
  • 10 Centi G, Perathoner S. Catal. Today 2009; 148: 191
  • 11 Ricci M, In Carbon Dioxide Recovery and Utilization. Aresta M, ED. Kluwer Dordrecht, The Netherlands 2003; p  395
  • 12 Ma J, Sun N, Zhang X, Zhao N, Xiao F, Wei W, Sun Y. Catal. Today 2009; 148: 221
  • 13 Baiker A. Appl. Organomet. Chem. 2000; 14: 751
  • 14 Chueh WC, Falter C, Abbott M, Scipio D, Furler P, Haile SM, Steinfeld A. Science (Washington, D. C.) 2010; 330: 1797
  • 15 Younas M, Kong LL, Bashir MJK, Nadeem H, Shehzad A, Sethupathi S. Energy Fuels 2016; 30: 8815
  • 16 Olah GA, Goeppert A, Surya Prakash GK. Beyond Oil and Gas: The Methanol Economy, 2nd ed.;. Wiley-VCH; Weinheim, Germany 2009
  • 17 Porosoff MD, Yan B, Chen JG. Energy Environ. Sci. 2016; 9: 62; and references cited therein.
  • 18 Centi G, Perathoner S. Stud. Surf. Sci. Catal. 2004; 153: 1
  • 19 Gunasekar GH, Park K, Jung K.-D, Yoon S. Inorg. Chem. Front. 2016; 3: 882; and references cited therein.
  • 20 Li Y.-N, Ma R, He L.-N, Diao Z.-F. Catal. Sci. Technol. 2014; 4: 1498; and references cited therein.
  • 21 Wang W.-H, Himeda Y, In Hydrogenation. Karamé I, ED. InTech; Rijeka, Croatia (2012); Chapter 10, p 249; 3; available online at www.intechopen.com/books/hydrogenation/recent-advances-in-transition-metal-catalysed-homogeneous-hydrogenation-of-carbon-dioxide-in-aqueous; DOI 10.5772/48 658.
  • 22 Mikkelsen M, Jorgensen M, Krebs FC. Energy Environ. Sci. 2010; 3: 43
  • 23 Dai W.-L, Luo S.-L, Yin S.-F, Au C.-T. Appl. Catal., A 2009; 366: 2
  • 24 Zhang S, Chen Y, Li F, Lu X, Dai W, Mori R. Catal. Today 2006; 115: 61
  • 25 Sun JM, Fujita S, Arai M. J. Organomet. Chem. 2005; 690: 3490
  • 26 Jessop PG. J. Supercrit. Fluids 2006; 38: 211
  • 27 Hietala J, Vuori A, Johnsson P, Pollari I, Reutemann W, Kieczka H. Ullmannʼs Encyclopedia of Industrial Chemistry. Wiley-VCH; Weinheim, Germany (2016); DOI 10.1002/14 356 007.a12_013.pub3.
  • 28 Grasemann M, Laurenczy G. Energy Environ. Sci. 2012; 5: 8171
  • 29 Jiang H.-L, Singh SK, Yan J.-M, Zhang X.-B, Xu Q. ChemSusChem 2010; 3: 541
  • 30 For an example of the application of formic acid fuel cells, see www.teamfast.nl/.
  • 31 Uhm S, Lee HJ, Lee J. Phys. Chem. Chem. Phys. 2009; 11: 9326
  • 32 Inoue Y, Izumida H, Sasaki Y, Hashimoto H. Chem. Lett. 1976; 863
  • 33 Leitner W, Dinjus E, Gassner F, In Aqueous-Phase Organometallic Catalysis: Concepts and Applications. Cornils B, Herrmann WA, EdS. Wiley-VCH Weinheim, Germany 1998; p 486
  • 34 Elek J, Nádasdi L, Papp G, Laurenczy G, Joó F. Appl. Catal., A 2003; 255: 59
  • 35 Moret S, Dyson PJ, Laurenczy G. Nat. Commun. 2014; 5: 4017
  • 36 Ziebart C, Federsel C, Anbarasan P, Jackstell R, Baumann W, Spannenberg A, Beller M. J. Am. Chem. Soc. 2012; 134: 20701
  • 37 Drake JL, Manna CM, Byers JA. Organometallics 2013; 32: 6891
  • 38 Hayashi H, Ogo S, Abura T, Fukuzumi S. J. Am. Chem. Soc. 2003; 125: 14266
  • 39 Hayashi H, Ogo S, Fukuzumi S. Chem. Commun. (Cambridge) 2004; 2714
  • 40 Himeda Y. Eur. J. Inorg. Chem. 2007; 3927
  • 41 Himeda Y, Miyazawa S, Hirose T. ChemSusChem 2011; 4: 487
  • 42 Himeda Y, Onozawa-Komatsuzaki N, Sugihara H, Arakawa H, Kasuga K. Organometallics 2004; 23: 1480
  • 43 Himeda Y, Onozawa-Komatsuzaki N, Sugihara H, Kasuga K. J. Am. Chem. Soc. 2005; 127: 13118
  • 44 Himeda Y, Onozawa-Komatsuzaki N, Sugihara H, Kasuga K. J. Photochem. Photobiol., A 2006; 182: 306
  • 45 Himeda Y, Onozawa-Komatsuzaki N, Sugihara H, Kasuga K. Organometallics 2007; 26: 702
  • 46 Rohmann K, Kothe J, Haenel MW, Englert U, Hölscher M, Leitner W. Angew. Chem. Int. Ed. 2016; 55: 8966
  • 47 Bertini F, Gorgas N, Stöger B, Peruzzini M, Veiros LF, Kirchner K, Gonsalvi L. ACS Catal. 2016; 6: 2889
  • 48 Tanaka R, Yamashita M, Nozaki K. J. Am. Chem. Soc. 2009; 131: 14168
  • 49 Tanaka R, Yamashita M, Chung LW, Morokuma K, Nozaki K. Organometallics 2011; 30: 6742
  • 50 Langer R, Diskin-Posner Y, Leitus G, Shimon LJW, Ben-David Y, Milstein D. Angew. Chem. Int. Ed. 2011; 50: 9948
  • 51 Sanz S, Azua A, Peris E. Dalton Trans. 2010; 39: 6339
  • 52 Azua A, Sanz S, Peris E. Chem.–Eur. J. 2011; 17: 3963
  • 53 Gassner F, Leitner W. J. Chem. Soc., Chem. Commun. 1993; 1465
  • 54 Munshi P, Main AD, Linehan JC, Tai C.-C, Jessop PG. J. Am. Chem. Soc. 2002; 124: 7963
  • 55 Lau CP, Chen YZ. J. Mol. Catal. A: Chem. 1995; 101: 33
  • 56 Joó F, Laurenczy G, Nádasdi L, Elek J. Chem. Commun. (Cambridge) 1999; 971
  • 57 Erlandsson M, Landaeta VR, Gonsalvi L, Peruzzini M, Phillips AD, Dyson PJ, Laurenczy G. Eur. J. Inorg. Chem. 2008; 620
  • 58 Schmeier TJ, Dobereiner GE, Crabtree RH, Hazari N. J. Am. Chem. Soc. 2011; 133: 9274
  • 59 Tai C.-C, Chang T, Roller B, Jessop PG. Inorg. Chem. 2003; 42: 7340
  • 60 Watari R, Kayaki Y, Hirano S.-I, Matsumoto N, Ikariya T. Adv. Synth. Catal. 2015; 357: 1369
  • 61 Zhang Y, Fei J, Yu Y, Zheng X. Catal. Commun. 2004; 5: 643
  • 62 Xu Z, McNamara ND, Neumann GT, Schneider WF, Hicks JC. ChemCatChem 2013; 5: 1769
  • 63 Park K, Gunasekar GH, Prakash N, Jung K.-D, Yoon S. ChemSusChem 2015; 8: 3410
  • 64 Yang Z, Zhang H, Yu B, Zhao Y, Ji G, Liu Z. Chem. Commun. (Cambridge) 2015; 51: 1271
  • 65 Preti D, Resta C, Squarcialupi S, Fachinetti G. Angew. Chem. Int. Ed. 2011; 50: 12551
  • 66 Preti D, Squarcialupi S, Fachinetti G. ChemCatChem 2012; 4: 469
  • 67 Filonenko GA, Vrijburg WL, Hensen EJM, Pidko EA. J. Catal. 2016; 343: 97
  • 68 Liu N, Du RJ, Li W. Adv. Mater. Res. (Durnten-Zurich, Switz.) 2013; 821–822: 1330; DOI 10.4028/www.scientific.net/AMR.821–822.1330.
  • 69 Inui T, Takeguchi T. Catal. Today 1991; 10: 95
  • 70 Huff CA, Sanford MS. J. Am. Chem. Soc. 2011; 133: 18122
  • 71 Wesselbaum S, vom Stein T, Klankermayer J, Leitner W. Angew. Chem. Int. Ed. 2012; 51: 7499
  • 72 Chakraborty S, Zhang J, Krause JA, Guan H. J. Am. Chem. Soc. 2010; 132: 8872
  • 73 Tominaga K.-I, Sasaki Y, Kawai M, Watanabe T, Saito M. J. Chem. Soc., Chem. Commun. 1993; 629
  • 74 Rezayee NM, Huff CA, Sanford MS. J. Am. Chem. Soc. 2015; 137: 1028
  • 75 Liaw BJ, Chen YZ. Appl. Catal., A 2001; 206: 245
  • 76 Arena F, Barbera K, Italiano G, Bonura G, Spadaro L, Frusteri F. J. Catal. 2007; 249: 185
  • 77 Saito M, Murata K. Catal. Surv. Asia 2004; 8: 285
  • 78 Liu X.-M, Lu GQ, Yan Z.-F, Beltramini J. Ind. Eng. Chem. Res. 2003; 42: 6518
  • 79 Bansode A, Urakawa A. J. Catal. 2014; 309: 66
  • 80 Słoczyński J, Grabowski R, Kozłowska A, Olszewski P, Stoch J, Skrzypek J, Lachowska M. Appl. Catal., A 2004; 278: 11
  • 81 Arena F, Mezzatesta G, Zafarana G, Trunfio G, Frusteri F, Spadaro L. J. Catal. 2013; 300: 141
  • 82 Cai WJ, de la Piscina PR, Toyir J, Homs N. Catal. Today 2015; 242: 193
  • 83 Bansode A, Tidona B, Rudolf von Rohr P, Urakawa A. Catal. Sci. Technol. 2013; 3: 767
  • 84 Ladera R, Pérez-Alonso FJ, González-Carballo JM, Ojeda M, Rojas S, Fierro JLG. Appl. Catal., B 2013; 142: 241
  • 85 Kong H, Li H.-Y, Lin G.-D, Zhang H.-B. Catal. Lett. 2011; 141: 886
  • 86 Liang X.-L, Xie J.-R, Liu Z.-M. Catal. Lett. 2015; 145: 1138
  • 87 Le Valant A, Comminges C, Tisseraud C, Canaff C, Pinard L, Pouilloux Y. J. Catal. 2015; 324: 41
  • 88 Jia L, Gao J, Fang W, Li Q. Catal. Commun. 2009; 10: 2000
  • 89 Toyir J, de la Piscina PR, Fierro JLG, Homs N. Appl. Catal., B 2001; 34: 255
  • 90 Wang W, Gong J. Front. Chem. Sci. Eng. 2011; 5: 2; and references cited therein.
  • 91 Aziz MAA, Jalil AA, Triwahyono S, Ahmada A. Green Chem. 2015; 17: 2647; and references cited therein.
  • 92 Chang F.-W, Tsay M.-T, Liang S.-P. Appl. Catal., A 2001; 209: 217
  • 93 Liu J, Li C, Wang F, He S, Chen H, Zhao Y, Wei M, Evans DG, Duan X. Catal. Sci. Technol. 2013; 3: 2627
  • 94 Chang F.-W, Kuo M.-S, Tsay M.-T, Hsieh M.-C. Appl. Catal., A 2003; 247: 309
  • 95 Hwang S, Hong UG, Lee J, Seo JG, Baik JH, Koh DJ, Lim H, Song IK. J. Ind. Eng. Chem. (Amsterdam, Neth.) 2013; 19: 2016
  • 96 Aksoylu A, Onsan Z. Appl. Catal., A 1997; 164: 1
  • 97 Song H, Yang J, Zhao J, Chou L. Chin. J. Catal. 2010; 31: 21
  • 98 Hwang S, Lee J, Hong UG, Baik JH, Koh DJ, Lim H, Song IK. J. Ind. Eng. Chem. (Amsterdam, Neth.) 2013; 19: 698
  • 99 Park JN, McFarland EW. J. Catal. 2009; 266: 92
  • 100 Zhou G, Wu T, Xie H, Zheng X. Int. J. Hydrogen Energy 2013; 38: 10012
  • 101 Garbarino G, Bellotti D, Riani P, Magistri L, Busca G. Int. J. Hydrogen Energy 2015; 40: 9171
  • 102 Sharma S, Hu Z, Zhang P, McFarland EW, Metiu H. J. Catal. 2011; 278: 297
  • 103 Chan LKM, Poole DL, Shen D, Healy MP, Donohoe TJ. Angew. Chem. Int. Ed. 2014; 53: 761
  • 104 Sorribes I, Junge K, Beller M. Chem.–Eur. J. 2014; 20: 7878
  • 105 Savourey S, Lefèvre G, Berthet J.-C, Cantat T. Chem. Commun. (Cambridge) 2014; 50: 14033
  • 106 Jacquet O, Frogneux X, Das Neves Gomes C, Cantat T. Chem. Sci. 2013; 4: 2127
  • 107 Santoro O, Nahra F, Cordes DB, Slawin AMZ, Nolan SP, Cazin CSJ. J. Mol. Catal. A: Chem. 2016; 423: 85
  • 108 Santoro O, Lazreg F, Minenkov Y, Cavallo L, Cazin CSJ. Dalton Trans. 2015; 44: 18138
  • 109 González-Sebastián L, Flores-Alamo M, García JJ. Organometallics 2015; 34: 763
  • 110 Beydoun K, vom Stein T, Klankermayer J, Leitner W. Angew. Chem. Int. Ed. 2013; 52: 9554
  • 111 Frogneux X, Jacquet O, Cantat T. Catal. Sci. Technol. 2014; 4: 1529
  • 112 Tlili A, Blondiaux E, Frogneux X, Cantat T. Green Chem. 2015; 17: 157; and references cited therein.
  • 113 Li Y, Fang X, Junge K, Beller M. Angew. Chem. Int. Ed. 2013; 52: 9568
  • 114 Li Y, Sorribes I, Yan T, Junge K, Beller M. Angew. Chem. Int. Ed. 2013; 52: 12156
  • 115 Cui X, Zhang Y, Deng Y, Shi F. Chem. Commun. (Cambridge) 2014; 50: 13521
  • 116 Kon K, Siddiki SMAH, Onodera W, Shimizu K. Chem.–Eur. J. 2014; 20: 6264
  • 117 Du XL, Tang G, Bao HL, Jiang Z, Zhong XH, Su DS, Wang JQ. ChemSusChem 2015; 8: 3489
  • 118 Cui X, Dai X, Zhang Y, Deng Y, Shi F. Chem. Sci. 2014; 5: 649
  • 119 Li Y, Yan T, Junge K, Beller M. Angew. Chem. Int. Ed. 2014; 53: 10476