Cazin, C.  et al.: 2018 Science of Synthesis, 2016/5b: N-Heterocyclic Carbenes in Catalytic Organic Synthesis 2 DOI: 10.1055/sos-SD-224-00213
N-Heterocyclic Carbenes in Catalytic Organic Synthesis 2

2.7.4 Flow Systems for N-Heterocyclic Carbene Catalysis

More Information

Book

Editors: Cazin, C. ; Nolan, S.

Authors: Basle, O.; Broggi, J.; Claver, C.; Clavier, H.; Collins, S. K.; Costabile, C.; Crevisy, C.; Crozet, D.; Davies, A.; Diesendruck, C. E.; Felten, S.; Godard, C.; Grela, K.; Holtz-Mulholland, M.; Jana, A.; Johnson, J.; Lapkin, A.; Liu, J.; Lombardía, A.; Louie, J.; Malecki, P.; Mauduit, M.; Munz, D.; Nelson, D.; Peñafiel, I.; Schmid, T.; Slugovc, C.; Smith, A. D.; Thieuleux, C.; Zhong, Y.

Title: N-Heterocyclic Carbenes in Catalytic Organic Synthesis 2

Print ISBN: 9783132414006; Online ISBN: 9783132414044; Book DOI: 10.1055/b-004-140260

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Carreira, E. M.; Decicco, C. P.; Fürstner, A.; Koch, G.; Molander, G.; Schaumann, E.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.

Type: Multivolume Edition

 


Abstract

Continuous-flow technology represents a paradigm shift in the manufacture of specialty chemicals and pharmaceuticals. In many such syntheses, catalysis by N-heterocyclic carbenes plays an important role due to the stability, activity, and broad synthetic utility of these species. This chapter explores the “sweet-spot” in the combination of catalysis by N-heterocyclic carbenes and flow-chemistry technology. The chapter opens with a description of the fundamentals of flow technology and then relates the functions of flow reactors to the specifics of N-heterocyclic carbene based catalysis. The chapter provides an overview of up-to-date literature on catalysis by carbenes in flow reactors.

 
  • 3 1st International Conference on Process Intensification for the Chemical Industry. Ramshaw C, Ed.;. BHR Group; London 1995
  • 18 Ley SV, Baxendale IR, Bream RN, Jackson PS, Leach AG, Longbottom DA, Nesi M, Scott JS, Storer RI, Taylor SJ. J. Chem. Soc., Perkin Trans. 1 2000; 3815
  • 19 Cussler EL, In Membrane Processes in Separation and Purification. Crespo JG, Böddeker KW., Eds.;. Kluwer Dordrecht, The Netherlands 1994);; p 375
  • 34 Henderson RK, Jiménez-González C, Constable DJC, Alston SR, Inglis GGA, Fisher G, Sherwood J, Binks SP, Curzons AD. Green Chem. 2011; 13: 854
  • 38 Panzner MJ, Hindi KM, Wright BD, Taylor JB, Han DS, Youngs WJ, Cannon CL. Dalton Trans. 2009; 7308
  • 39 Kascatan-Nebioglu A, Melaiye A, Hindi K, Durmus S, Panzner MJ, Hogue LA, Mallett RJ, Hovis CE, Coughenour M, Crosby SD, Milsted A, Ely DL, Tessier CA, Cannon CL, Youngs WJ. J. Med. Chem. 2006; 49: 6811
  • 43 Worm-Leonhard K, Meldal M. Eur. J. Org. Chem. 2008; 5244
  • 52 Briel O, Cazin CSJ, In N-Heterocyclic Carbenes in Transition Metal Catalysis and Organocatalysis. Cazin CSJ, Ed.;. Springer Dordrecht, The Netherlands 2011);; p 315
  • 63 Duque R, Cole-Hamilton DJ, In Supported Ionic Liquids: Fundamentals and Applications. Fehrmann R, Riisager A, Haumann M, Eds.;. Wiley-VCH Weinheim, Germany 2014);; pp 369–384
  • 75 Cabrera J, Padilla R, Bru M, Lindner R, Kageyama T, Wilckens K, Balof SL, Schanz H.-J, Dehn R, Teles JH, Deuerlein S, Müller K, Rominger F, Limbach M. Chem.–Eur. J. 2012; 18: 14717
  • 77 Borré E, Rouen M, Laurent I, Magrez M, Caijo F, Crévisy C, Solodenko W, Toupet L, Frankfurter R, Vogt C, Kirschning A, Mauduit M. Chem.–Eur. J. 2012; 18: 16369
  • 86 Falß S, Tomaiuolo G, Perazzo A, Yaseneva P, Zakrzewski J, Guido S, Lapkin A, Woodward R, Meadows RE. Org. Process Res. Dev. 2016; 20: 558
  • 91 Rahman MT, Fukuyama T, Kamata N, Sato M, Ryu I. Chem. Commun. (Cambridge) 2006; 2236