Cazin, C.  et al.: 2018 Science of Synthesis, 2016/5b: N-Heterocyclic Carbenes in Catalytic Organic Synthesis 2 DOI: 10.1055/sos-SD-224-00164
N-Heterocyclic Carbenes in Catalytic Organic Synthesis 2

2.6 Carboxylation, Carbonylation, and Dehalogenation

More Information

Book

Editors: Cazin, C. ; Nolan, S.

Authors: Basle, O.; Broggi, J.; Claver, C.; Clavier, H.; Collins, S. K.; Costabile, C.; Crevisy, C.; Crozet, D.; Davies, A.; Diesendruck, C. E.; Felten, S.; Godard, C.; Grela, K.; Holtz-Mulholland, M.; Jana, A.; Johnson, J.; Lapkin, A.; Liu, J.; Lombardía, A.; Louie, J.; Malecki, P.; Mauduit, M.; Munz, D.; Nelson, D.; Peñafiel, I.; Schmid, T.; Slugovc, C.; Smith, A. D.; Thieuleux, C.; Zhong, Y.

Title: N-Heterocyclic Carbenes in Catalytic Organic Synthesis 2

Print ISBN: 9783132414006; Online ISBN: 9783132414044; Book DOI: 10.1055/b-004-140260

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Carreira, E. M.; Decicco, C. P.; Fürstner, A.; Koch, G.; Molander, G.; Schaumann, E.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.

Type: Multivolume Edition

 


Abstract

This chapter describes the use of N-heterocyclic carbene–metal complexes in carboxylation, carbonylation, and dehalogenation reactions. Catalysts based on copper, gold, palladium, rhodium, and nickel are considered.

 
  • 1 Gaillard S, Slawin AMZ, Nolan SP. Chem. Commun. (Cambridge) 2010; 46: 2742
  • 2 Gaillard S, Bosson J, Ramón RS, Nun P, Slawin AMZ, Nolan SP. Chem.–Eur. J. 2010; 16: 13729
  • 3 Boogaerts IIF, Nolan SP. J. Am. Chem. Soc. 2010; 132: 8858
  • 4 Boogaerts IIF, Fortman GC, Furst MRL, Cazin CSJ, Nolan SP. Angew. Chem. Int. Ed. 2010; 49: 8674
  • 5 Zhang L, Cheng J, Ohishi T, Hou Z. Angew. Chem. Int. Ed. 2010; 49: 8670
  • 6 Ohishi T, Nishiura M, Hou Z. Angew. Chem. Int. Ed. 2008; 47: 5792
  • 7 Ohishi T, Zhang L, Nishiura M, Hou Z. Angew. Chem. Int. Ed. 2011; 50: 8114
  • 8 Duong HA, Huleatt PB, Tan Q.-W, Shuying EL. Org. Lett. 2013; 15: 4034
  • 9 Makida Y, Marelli E, Slawin AMZ, Nolan SP. Chem. Commun. (Cambridge) 2014; 50: 8010
  • 10 Fujihara T, Xu T, Semba K, Terao J, Tsuji Y. Angew. Chem. Int. Ed. 2011; 50: 523
  • 11 Zhang W.-Z, Li W.-J, Zhang X, Zhou H, Lu X.-B. Org. Lett. 2010; 12: 4748
  • 12 Louie J, Gibby JE, Farnworth MV, Tekavec TN. J. Am. Chem. Soc. 2002; 124: 15188
  • 13 Tekavec TN, Arif AM, Louie J. Tetrahedron 2004; 60: 7431
  • 14 Liu J, Zhang R, Wang S, Sun W, Xia C. Org. Lett. 2009; 11: 1321
  • 15 Zhang C, Liu J, Xia C. Org. Biomol. Chem. 2014; 12: 9702
  • 16 Ho S, Bondarenko G, Rosa D, Dragisic B, Orellana A. J. Org. Chem. 2012; 77: 2008
  • 17 Choi SY, Chung YK. Adv. Synth. Catal. 2011; 353: 2609
  • 18 Andrus MB, Ma Y, Zang Y, Song C. Tetrahedron Lett. 2002; 43: 9137
  • 19 OʼKeefe BM, Simmons N, Martin SF. Org. Lett. 2008; 10: 5301
  • 20 OʼKeefe BM, Simmons N, Martin SF. Tetrahedron 2011; 67: 4344
  • 21 Akzinnay S, Bisaro F, Cazin CSJ. Chem. Commun. (Cambridge) 2009; 5752