2.3 Cyclization Reactions
Book
Editors: Cazin, C. ; Nolan, S.
Title: N-Heterocyclic Carbenes in Catalytic Organic Synthesis 2
Print ISBN: 9783132414006; Online ISBN: 9783132414044; Book DOI: 10.1055/b-004-140260
1st edition © 2018 Georg Thieme Verlag KG
Georg Thieme Verlag, Stuttgart
Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry
Science of Synthesis Reference Libraries
Parent publication
Title: Science of Synthesis
DOI: 10.1055/b-00000101
Series Editors: Carreira, E. M.; Decicco, C. P.; Fürstner, A.; Koch, G.; Molander, G.; Schaumann, E.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.
Type: Multivolume Edition
Abstract

This chapter presents a detailed overview of current research into N-heterocyclic carbene (NHC) coordinated, transition-metal-catalyzed cyclization reactions. Highly efficient and economical access to pharmacologically relevant moieties, such as carbo- and heterocycles, is crucial in synthetic chemistry. Though cyclizations are atom-economical, historically harsh reaction conditions, poor substrate tolerance, and low product selectivity severely limited the practicality of such reactions. However, transition-metal catalysts based on copper, gold, palladium, nickel, rhodium, cobalt, and iron have allowed for the rapid synthesis of cyclization products in good to high yield and with high selectivity. In addition, these cyclizations tolerate starting materials bearing a variety of functional groups. Symmetric and asymmetric NHC ligands have proven to be critical for success in generating efficient transition-metal based catalytic systems. The electronic and steric diversity of NHC ligands allows for the fine-tuning of the transition-metal catalyst, which has resulted in effective [n + m]-cycloaddition reactions, inter- and intramolecular cycloisomerization reactions, and rearrangement reactions.
Key words
cobalt catalysis - copper catalysis - cyclization - cycloaddition - cycloisomerization - gold catalysis - iron catalysis - N-heterocyclic carbenes - nickel catalysis - palladium catalysis - rearrangements - rhodium catalysis - transition-metal catalysis- 3 López S, Herrero-Gómez E, Pérez-Galán P, Nieto-Oberhuber C, Echavarren AM. Angew. Chem. Int. Ed. 2006; 45: 6029
- 12 Trillo B, López F, Montserrat S, Ujaque G, Castedo L, Lledós A, Mascareñas JL. Chem.–Eur. J. 2009; 15: 3336
- 14 Francos J, Grande-Carmona F, Faustino H, Iglesias-Sigüenza J, Díez E, Alonso I, Fernández R, Lassaletta JM, López F, Mascareñas JL. J. Am. Chem. Soc. 2012; 134: 14322
- 17 Marion N, Lemière G, Correa A, Costabile C, Ramón RS, Moreau X, de Frémont P, Dahmane R, Hours A, Lesage D, Tabet J.-C, Goddard J.-P, Gandon V, Cavallo L, Fensterbank L, Malacria M, Nolan SP. Chem.–Eur. J. 2009; 15: 3243
- 18 Correa A, Marion N, Fensterbank L, Malacria M, Nolan SP, Cavallo L. Angew. Chem. Int. Ed. 2008; 47: 718
- 19 Marion N, Díez-González S, de Frémont P, Noble AR, Nolan SP. Angew. Chem. Int. Ed. 2006; 45: 3647
- 25 Tomás-Mendivil E, Toullec PY, Díez J, Conejero S, Michelet V, Cadierno V. Org. Lett. 2012; 14: 2520
- 39 Díez-González S, Escudero-Adán EC, Benet-Buchholz J, Stevens ED, Slawin AMZ, Nolan SP. Dalton Trans. 2010; 39: 7595
- 46 Teyssot M.-L, Chevry A, Traïkia M, El-Ghozzi M, Avignant D, Gautier A. Chem.–Eur. J. 2009; 15: 6322
- 47 Teyssot M.-L, Nauton L, Canet J.-L, Cisnetti F, Chevry A, Gautier A. Eur. J. Org. Chem. 2010; 3507
- 57 Wu L, Falivene L, Drinkel E, Grant S, Linden A, Cavallo L, Dorta R. Angew. Chem. Int. Ed. 2012; 51: 2870