Cazin, C.  et al.: 2018 Science of Synthesis, 2016/5b: N-Heterocyclic Carbenes in Catalytic Organic Synthesis 2 DOI: 10.1055/sos-SD-224-00028
N-Heterocyclic Carbenes in Catalytic Organic Synthesis 2

2.1.4 Enyne Metathesis

More Information

Book

Editors: Cazin, C. ; Nolan, S.

Authors: Basle, O.; Broggi, J.; Claver, C.; Clavier, H.; Collins, S. K.; Costabile, C.; Crevisy, C.; Crozet, D.; Davies, A.; Diesendruck, C. E.; Felten, S.; Godard, C.; Grela, K.; Holtz-Mulholland, M.; Jana, A.; Johnson, J.; Lapkin, A.; Liu, J.; Lombardía, A.; Louie, J.; Malecki, P.; Mauduit, M.; Munz, D.; Nelson, D.; Peñafiel, I.; Schmid, T.; Slugovc, C.; Smith, A. D.; Thieuleux, C.; Zhong, Y.

Title: N-Heterocyclic Carbenes in Catalytic Organic Synthesis 2

Print ISBN: 9783132414006; Online ISBN: 9783132414044; Book DOI: 10.1055/b-004-140260

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Carreira, E. M.; Decicco, C. P.; Fürstner, A.; Koch, G.; Molander, G.; Schaumann, E.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.

Type: Multivolume Edition

 


Abstract

Enyne metathesis is a metal-catalyzed reaction between an alkene and an alkyne, resulting in C–C bond formation to give a 1,3-diene. This chapter explores the different forms of this powerful reaction, both as a single reaction and as part of a reaction cascade to form polycyclic compounds.

 
  • 1 Diver ST, Griffiths JR, In Olefin Metathesis: Theory and Practice. Grela K, Ed.;. Wiley Hoboken, NJ 2014); p ; 153
  • 2 Katz TJ, Sivavec TM. J. Am. Chem. Soc. 1985; 107: 737
  • 3 Dragutan I, Dragutan V, Demonceau A, Delaude L. Curr. Org. Chem. 2013; 17: 2678
  • 4 N-Heterocyclic Carbenes: Effective Tools for Organometallic Synthesis. Nolan SP, Ed.;. Wiley-VCH; Weinheim, Germany 2014
  • 5 Lippstreu JJ, Straub BF. J. Am. Chem. Soc. 2005; 127: 7444
  • 6 Nguyen ST, Johnson LK, Grubbs RH, Ziller JW. J. Am. Chem. Soc. 1992; 114: 3974
  • 7 Giessert AJ, Snyder L, Markham J, Diver ST. Org. Lett. 2003; 5: 1793
  • 8 Li J, Lee D. Eur. J. Org. Chem. 2011; 4269
  • 9 Kitamura T, Sato Y, Mori M. Chem. Commun. (Cambridge) 2001; 1258
  • 10 Hansen EC, Lee D. Acc. Chem. Res. 2006; 39: 509
  • 11 Kitamura T, Sato Y, Mori M. Adv. Synth. Catal. 2002; 344: 678
  • 12 Hansen EC, Lee D. J. Am. Chem. Soc. 2003; 125: 9582
  • 13 Kinoshita A, Mori M. J. Org. Chem. 1996; 61: 8356
  • 14 Kim M, Park S, Maifeld SV, Lee D. J. Am. Chem. Soc. 2004; 126: 10242
  • 15 Giessert AJ, Diver ST. Org. Lett. 2005; 7: 351
  • 16 Lee H.-Y, Kim BG, Snapper ML. Org. Lett. 2003; 5: 1855
  • 17 Kulkarni AA, Diver ST. J. Am. Chem. Soc. 2004; 126: 8110
  • 18 Hansen EC, Lee D. J. Am. Chem. Soc. 2004; 126: 15074
  • 19 Krishna PR, Alivelu M. Tetrahedron Lett. 2010; 51: 6265
  • 20 Żukowska K, Grela K, In Comprehensive Organic Synthesis II. Knochel P, Molander GA, Eds.;. Elsevier; Amsterdam 2014);. Vol. 5, p  1257.
  • 21 Stragies R, Schuster M, Blechert S. Angew. Chem. Int. Ed. Engl. 1997; 36: 2518
  • 22 Mori M, Tonogaki K, Nishiguchi N. J. Org. Chem. 2002; 67: 224
  • 23 Kaliappan KP, Subrahmanyam AV. Org. Lett. 2007; 9: 1121
  • 24 Diesendruck CE, Tzur E, Lemcoff NG. Eur. J. Inorg. Chem. 2009; 4185
  • 25 Kinoshita A, Mori M. Synlett 1994; 1020
  • 26 Mori M, Sakakibara N, Kinoshita A. J. Org. Chem. 1998; 63: 6082
  • 27 Grotevendt AGD, Lummiss JAM, Mastronardi ML, Fogg DE. J. Am. Chem. Soc. 2011; 133: 15918
  • 28 Mori M, Kitamura T, Sato Y. Synthesis 2001; 654
  • 29 Schwab P, France MB, Ziller JW, Grubbs RH. Angew. Chem. Int. Ed. Engl. 1995; 34: 2039
  • 30 Scholl M, Ding S, Lee CW, Grubbs RH. Org. Lett. 1999; 1: 953
  • 31 Smulik JA, Diver ST. Org. Lett. 2000; 2: 2271
  • 32 Clavier H, Correa A, Escudero-Adán EC, Benet-Buchholz J, Cavallo L, Nolan SP. Chem.–Eur. J. 2009; 15: 10244
  • 33 Royer F, Vilain C, Elkaïm L, Grimaud L. Org. Lett. 2003; 5: 2007
  • 34 Kim S.-H, Bowden N, Grubbs RH. J. Am. Chem. Soc. 1994; 116: 10801
  • 35 Honda T, Namiki H, Kaneda K, Mizutani H. Org. Lett. 2004; 6: 87
  • 36 Zuercher WJ, Scholl M, Grubbs RH. J. Org. Chem. 1998; 63: 4291
  • 37 Kim M, Miller RL, Lee D. J. Am. Chem. Soc. 2005; 127: 12818
  • 38 Kim M, Lee D. J. Am. Chem. Soc. 2005; 127: 18024
  • 39 Li J, Park S, Miller RL, Lee D. Org. Lett. 2009; 11: 571
  • 40 Choi T.-L, Grubbs RH. Chem. Commun. (Cambridge) 2001; 2648
  • 41 Hoye TR, Jeffrey CS, Tennakoon MA, Wang J, Zhao H. J. Am. Chem. Soc. 2004; 126: 10210
  • 42 Hansen EC, Lee D. Org. Lett. 2004; 6: 2035
  • 43 Vedrenne E, Royer F, Oble J, El Kaïm L, Grimaud L. Synlett 2005; 2379
  • 44 Laroche B, Detraz M, Blond A, Dubost L, Mailliet P, Nay B. J. Org. Chem. 2015; 80: 5359
  • 45 Stewart IC, Ung T, Pletnev AA, Berlin JM, Grubbs RH, Schrodi Y. Org. Lett. 2007; 9: 1589