Gao, S. et al.: 2016 Science of Synthesis, 2016/4b: Metal-Catalyzed Cyclization Reactions 2 DOI: 10.1055/sos-SD-222-00111
Metal-Catalyzed Cyclization Reactions 2

2.5 Metal-Catalyzed Asymmetric Diels–Alder and Hetero-Diels–Alder Reactions

More Information

Book

Editors: Gao, S.; Ma, S.

Authors: Bora, U.; Dominguez, G.; Du, H.; Garve, L.; Harmata, M.; Hu, W.; Jones, D. E.; Lee, D.; Li, X.; Mondal, M.; Pérez Castells, J.; Sabbasani, V. R.; Shibata, Y.; Tanaka, K.; Tang, W.; Werz, D. B.; Xia, F.; Xu, X.; Ye, S.

Title: Metal-Catalyzed Cyclization Reactions 2

Print ISBN: 9783131998118; Online ISBN: 9783132404823; Book DOI: 10.1055/b-004-129734

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Carreira, E. M.; Decicco, C. P.; Fürstner, A.; Koch, G.; Molander, G.; Schaumann, E.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.

Type: Multivolume Edition

 


Abstract

This chapter focuses on asymmetric Diels–Alder, oxa-Diels–Alder, and aza-Diels–Alder reactions promoted by various chiral, Lewis acidic metal catalysts. As well as describing the different approaches and catalysts, selected examples of these reactions in the synthesis of natural products and drug molecules are presented.

 
  • 1 Diels O, Alder K. Justus Liebigs Ann. Chem. 1928; 460: 98
  • 2 Berson JA. Tetrahedron 1992; 48: 3
  • 3 Korolev A, Mur V. Dokl. Akad. Nauk SSSR 1948; 51: 251
  • 4 Walborsky HM, Barash L, Davis TC. Tetrahedron 1963; 19: 2333
  • 5 Riant O, Kagan HB. Tetrahedron Lett. 1989; 30: 7403
  • 6 Furuta K, Miwa Y, Iwanaga K, Yamamoto H. J. Am. Chem. Soc. 1988; 110: 6254
  • 7 Furuta K, Shimizu S, Miwa Y, Yamamoto H. J. Org. Chem. 1989; 54: 1481
  • 8 Corey EJ, Loh T.-P. J. Am. Chem. Soc. 1991; 113: 8966
  • 9 Corey EJ, Loh T.-P, Roper TD, Azimioara MD, Noe MC. J. Am. Chem. Soc. 1992; 114: 8290
  • 10 Hayashi Y, Rohde JJ, Corey EJ. J. Am. Chem. Soc. 1996; 118: 5502
  • 11 Ishihara K, Yamamoto H. J. Am. Chem. Soc. 1994; 116: 1561
  • 12 Ryu DH, Lee TW, Corey EJ. J. Am. Chem. Soc. 2002; 124: 9992
  • 13 Ryu DH, Corey EJ. J. Am. Chem. Soc. 2003; 125: 6388
  • 14 Canales E, Corey EJ. Org. Lett. 2008; 10: 3271
  • 15 Futatsugi K, Yamamoto H. Angew. Chem. Int. Ed. 2005; 44: 1484
  • 16 Corey EJ, Imwinkelried R, Pikul S, Xiang YB. J. Am. Chem. Soc. 1989; 111: 5493
  • 17 Bao J, Wulff WD, Rheingold AL. J. Am. Chem. Soc. 1993; 115: 3814
  • 18 Teo Y.-C, Loh T.-P. Org. Lett. 2005; 7: 2539
  • 19 Evans DA, Barnes DM, Johnson JS, Lectka T, von Matt P, Miller SJ, Murry JA, Norcross RD, Shaughnessy EA, Campos KR. J. Am. Chem. Soc. 1999; 121: 7582
  • 20 Palomo C, Oiarbide M, García JM, González A, Arceo E. J. Am. Chem. Soc. 2003; 125: 13942
  • 21 Barroso S, Blay G, Pedro JR. Org. Lett. 2007; 9: 1983
  • 22 Sibi MP, Stanley LM, Nie X, Venkatraman L, Liu M, Jasperse CP. J. Am. Chem. Soc. 2007; 129: 395
  • 23 Barroso S, Blay G, Al-Midfa L, Muñoz MC, Pedro JR. J. Org. Chem. 2008; 73: 6389
  • 24 Owens TD, Hollander FJ, Oliver AG, Ellman JA. J. Am. Chem. Soc. 2001; 123: 1539
  • 25 Mikami K, Motoyama Y, Terada M. J. Am. Chem. Soc. 1994; 116: 2812
  • 26 Maruoka K, Murase N, Yamamoto H. J. Org. Chem. 1993; 58: 2938
  • 27 Huang Y, Iwama T, Rawal VH. J. Am. Chem. Soc. 2000; 122: 7843
  • 28 Huang Y, Iwama T, Rawal VH. J. Am. Chem. Soc. 2002; 124: 5950
  • 29 Rickerby J, Vallet M, Bernardinelli G, Viton F, Kündig EP. Chem.–Eur. J. 2007; 13: 3354
  • 30 Kobayashi S, Ishitani H, Hachiya I, Araki M. Tetrahedron 1994; 50: 11623
  • 31 Markó IE, Evans GR, Seres P, Chellé I, Janousek Z. Pure Appl. Chem. 1996; 68: 113
  • 32 Sudo Y, Shirasaki D, Harada S, Nishida A. J. Am. Chem. Soc. 2008; 130: 12588
  • 33 Danishefsky SJ, Larson E, Askin D, Kato N. J. Am. Chem. Soc. 1985; 107: 1246
  • 34 Maruoka K, Itoh T, Shirasaka T, Yamamoto H. J. Am. Chem. Soc. 1988; 110: 310
  • 35 Yu Z, Liu X, Dong Z, Xie M, Feng X. Angew. Chem. Int. Ed. 2008; 47: 1308
  • 36 Keck GE, Li X.-Y, Krishnamurthy D. J. Org. Chem. 1995; 60: 5998
  • 37 Wang B, Feng X, Cui X, Liu H, Jiang Y. Chem. Commun. (Cambridge) 2000; 1605
  • 38 Kii S, Hashimoto T, Maruoka K. Synlett 2002; 931
  • 39 Yang X.-B, Feng J, Zhang J, Wang N, Wang L, Liu J.-L, Yu X.-Q. Org. Lett. 2008; 10: 1299
  • 40 Lin L, Chen Z, Yang X, Liu X, Feng X. Org. Lett. 2008; 10: 1311
  • 41 Long J, Hu J, Shen X, Ji B, Ding K. J. Am. Chem. Soc. 2002; 124: 10
  • 42 Yuan Y, Long J, Sun J, Ding K. Chem.–Eur. J. 2002; 8: 5033
  • 43 Yuan Y, Li X, Sun J, Ding K. J. Am. Chem. Soc. 2002; 124: 14866
  • 44 Ji B, Yuan Y, Ding K, Meng J. Chem.–Eur. J. 2003; 9: 5989
  • 45 Yamashita Y, Saito S, Ishitani H, Kobayashi S. Org. Lett. 2002; 4: 1221
  • 46 Yamashita Y, Saito S, Ishitani H, Kobayashi S. J. Am. Chem. Soc. 2003; 125: 3793
  • 47 Schaus SE, Brånalt J, Jacobsen EN. J. Org. Chem. 1998; 63: 403
  • 48 Dossetter AG, Jamison TF, Jacobsen EN. Angew. Chem. Int. Ed. 1999; 38: 2398
  • 49 Gademann K, Chavez DE, Jacobsen EN. Angew. Chem. Int. Ed. 2002; 41: 3059
  • 50 Yao S, Johannsen M, Audrain H, Hazell RG, Jørgensen KA. J. Am. Chem. Soc. 1998; 120: 8599
  • 51 Thorhauge J, Johannsen M, Jørgensen KA. Angew. Chem. Int. Ed. 1998; 37: 2404
  • 52 Audrain H, Thorhauge J, Hazell RG, Jørgensen KA. J. Org. Chem. 2000; 65: 4487
  • 53 Du H, Long J, Hu J, Li X, Ding K. Org. Lett. 2002; 4: 4349
  • 54 Du H, Ding K. Org. Lett. 2003; 5: 1091
  • 55 Du H, Zhang X, Wang Z, Ding K. Tetrahedron 2005; 61: 9465
  • 56 Du H, Zhang X, Wang Z, Bao H, You T, Ding K. Eur. J. Org. Chem. 2008; 2248
  • 57 Doyle MP, Phillips IM, Hu W. J. Am. Chem. Soc. 2001; 123: 5366
  • 58 Valenzuela M, Doyle MP, Hedberg C, Hu W, Holmstrom A. Synlett 2004; 2425
  • 59 Anada M, Washio T, Shimada N, Kitagaki S, Nakajima M, Shiro M, Hashimoto S. Angew. Chem. Int. Ed. 2004; 43: 2665
  • 60 Oi S, Terada E, Ohuchi K, Kato T, Tachibana Y, Inoue Y. J. Org. Chem. 1999; 64: 8660
  • 61 Tiseni PS, Peters R. Org. Lett. 2008; 10: 2019
  • 62 Tiseni PS, Peters R. Chem.–Eur. J. 2010; 16: 2503
  • 63 Manchenõ OG, Arrayás RG, Carretero JC. J. Am. Chem. Soc. 2004; 126: 456
  • 64 Tong M.-C, Chen X, Li J, Huang R, Tao H, Wang C.-J. Angew. Chem. Int. Ed. 2014; 53: 4680
  • 65 Eschenbrenner-Lux V, Küchler P, Ziegler S, Kumar K, Waldmann H. Angew. Chem. Int. Ed. 2014; 53: 2134
  • 66 Josephsohn NS, Snapper ML, Hoveyda AH. J. Am. Chem. Soc. 2003; 125: 4018
  • 67 Kobayashi S, Komiyama S, Ishitani H. Angew. Chem. Int. Ed. 1998; 37: 979
  • 68 Kobayashi S, Kusakabe K, Komiyama S, Ishitani H. J. Org. Chem. 1999; 64: 4220
  • 69 Kobayashi S, Kusakabe K, Ishitani H. Org. Lett. 2000; 2: 1225
  • 70 Jurčík V, Arai K, Salter MM, Yamashita Y, Kobayashi S. Adv. Synth. Catal. 2008; 350: 647
  • 71 Esquivias J, Arrayás RG, Carretero JC. J. Am. Chem. Soc. 2007; 129: 1480
  • 72 Watanabe Y, Washio T, Krishnamurthi J, Anada M, Hashimoto S. Chem. Commun. (Cambridge) 2012; 48: 6969
  • 73 Shang D, Xin J, Liu Y, Zhou X, Liu X, Feng X. J. Org. Chem. 2008; 73: 630
  • 74 Xie M, Chen X, Zhu Y, Gao B, Lin L, Liu X, Feng X. Angew. Chem. Int. Ed. 2010; 49: 3799
  • 75 Deng Y, Liu L, Sarkisian RG, Wheeler K, Wang H, Xu Z. Angew. Chem. Int. Ed. 2013; 52: 3663
  • 76 Hu Q.-Y, Zhou G, Corey EJ. J. Am. Chem. Soc. 2004; 126: 13708
  • 77 Yeung Y.-Y, Hong S, Corey EJ. J. Am. Chem. Soc. 2006; 128: 6310
  • 78 Yu M, Danishefsky SJ. J. Am. Chem. Soc. 2008; 130: 2783
  • 79 Kong K, Moussa Z, Lee C, Romo D. J. Am. Chem. Soc. 2011; 133: 19844
  • 80 Thompson CF, Jamison TF, Jacobsen EN. J. Am. Chem. Soc. 2001; 123: 9974
  • 81 Boezio AA, Jarvo ER, Lawrence BM, Jacobsen EN. Angew. Chem. Int. Ed. 2005; 44: 6046
  • 82 Ghosh AK, Gong G. Org. Lett. 2007; 9: 1437
  • 83 Paterson I, Miller NA. Chem. Commun. (Cambridge) 2008; 4708
  • 84 Nicolaou KC, Tria GS, Edmonds DJ. Angew. Chem. Int. Ed. 2008; 47: 1780
  • 85 Bonazzi S, Güttinger S, Zemp I, Kutay U, Gademann K. Angew. Chem. Int. Ed. 2007; 46: 8707