Gao, S. et al.: 2016 Science of Synthesis, 2016/4a: Metal-Catalyzed Cyclization Reactions 1 DOI: 10.1055/sos-SD-221-00172
Metal-Catalyzed Cyclization Reactions 1

1.6 Metal-Catalyzed Cyclization Reactions of Allenes

More Information

Book

Editors: Gao, S.; Ma, S.

Authors: Alderson, J.; Beccalli, E. M.; Bonetti, A.; Gao, S.; Guiry, P.; Jammi, S.; Mazza, A.; Nottingham, C.; Phelps, A.; Schomaker, J. M.; Shi, M.; Tang, X.-Y.; Wang, D.; Yamamoto, Y.; You, S. ; Zhang, L.; Zhang, X.

Title: Metal-Catalyzed Cyclization Reactions 1

Print ISBN: 9783131998613; Online ISBN: 9783132403406; Book DOI: 10.1055/b-003-129294

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Carreira, E. M.; Decicco, C. P.; Fürstner, A.; Koch, G.; Molander, G.; Schaumann, E.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.

Type: Multivolume Edition

 


Abstract

Allenes represent a unique scaffold for powerful cyclization reactions due to the ability to incorporate additional functionality into the newly formed ring. Metal-catalyzed cyclization reactions of allenes represent a powerful strategy for the synthesis of highly functionalized heterocycles and carbocycles. A variety of metals can be used to facilitate cyclization; the nature of the metal influences which allene carbon is attacked by an internal nucleophile, leading to convenient access to multiple ring systems from a simple precursor. The unique axial chirality of allenes can dictate the stereochemistry featured in the ring through axial-to-point chirality transfer.

 
  • 1 Yu S, Ma S. Chem. Commun. (Cambridge) 2011; 47: 5384
  • 2 Zhang Z, Liu C, Kinder RE, Han X, Qian H, Widenhoefer RA. J. Am. Chem. Soc. 2006; 128: 9066
  • 3 Jiang X, Ma X, Zheng Z, Ma S. Chem.–Eur. J. 2008; 14: 8572
  • 4 Kimura M, Fugami K, Tanaka S, Tamaru Y. Tetrahedron Lett. 1991; 32: 6359
  • 5 Zhang Z, Bender CF, Widenhoefer RA. J. Am. Chem. Soc. 2007; 129: 14148
  • 6 Inuki S, Iwata A, Oishi S, Fujii N, Ohno H. J. Org. Chem. 2011; 76: 2072
  • 7 Deng Y, Li J, Ma S. Chem.–Eur. J. 2008; 14: 4263
  • 8 Kang J.-E, Lee E.-S, Park S.-I, Shin S. Tetrahedron Lett. 2005; 46: 7431
  • 9 Marshall JA, Wolf MA, Wallace EM. J. Org. Chem. 1997; 62: 367
  • 10 Krause N, Morita N. Org. Lett. 2004; 6: 4121
  • 11 Hoffmann-Röder A, Krause N. Org. Lett. 2001; 3: 2537
  • 12 Marshall JA, Bartley GS. J. Org. Chem. 1994; 59: 7169
  • 13 Adams CS, Boralsky LB, Guzei IA, Schomaker JM. J. Am. Chem. Soc. 2012; 134: 10807
  • 14 Li H, Lee SD, Widenhoefer RA. J. Organomet. Chem. 2011; 696: 316
  • 15 LaLonde RL, Sherry BD, Kang EJ, Toste FD. J. Am. Chem. Soc. 2007; 129: 2452
  • 16 Li M, Datta S, Barber DM, Dixon DJ. Org. Lett. 2012; 14: 6350
  • 17 Phelps AM, Dolan NS, Connell NT, Schomaker JM. Tetrahedron 2013; 69: 5614
  • 18 Watanabe T, Oishi S, Fujii N, Ohno H. Org. Lett. 2007; 9: 4821
  • 19 Tarselli MA, Gagné MR. J. Org. Chem. 2008; 73: 2439
  • 20 Ma S, Jiao N, Yang Q, Zheng Z. J. Org. Chem. 2004; 69: 6463
  • 21 Wan B, Jia G, Ma S. Adv. Synth. Catal. 2011; 353: 1763
  • 22 Jiang X, Yang Q, Yu Y, Fu C, Ma S. Chem.–Eur. J. 2009; 15: 7283
  • 23 Morita N, Krause N. Angew. Chem. Int. Ed. 2006; 45: 1897
  • 24 Volz F, Wadman SH, Hoffmann-Röder A, Krause N. Tetrahedron 2009; 65: 1902
  • 25 Bates RW, Lu Y. J. Org. Chem. 2009; 74: 9460
  • 26 Bates RW, Dewey MR. Org. Lett. 2009; 11: 3706
  • 27 Bates RW, Nemeth J, Snell RH. Synthesis 2008; 1033
  • 28 Zeldin RM, Toste FD. Chem. Sci. 2011; 2: 1706