Yu, J.-Q.: 2015 Science of Synthesis, 3b: Catalytic Transformations via C-H Activation Vol. 2 DOI: 10.1055/sos-SD-218-00148
Catalytic Transformations via C—H Activation 2

2.8 C—N Bond Formation by Arene C—H Activation Using a Palladium Catalyst

More Information

Book

Editor: Yu, J.-Q.

Authors: Carreira, E. M.; Decicco, C. P.; Fuerstner, A.; Koch, G.; Molander, G. A.; Schaumann, E.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.

Title: Catalytic Transformations via C-H Activation Vol. 2

Print ISBN: 9783132057210; Online ISBN: 9783132404137; Book DOI: 10.1055/b-004-129675

Subjects: Organic Chemistry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Type: Multivolume Edition

 


Abstract

The search for methodologies allowing C(sp2)—N bond formation is of utmost interest as the arylamine motif is ubiquitous in nature and life and material sciences. This chapter focuses on palladium-catalyzed arene C—H activation for the direct amination of C(sp2)—H bonds, generally under oxidizing conditions. These processes mainly allow the efficient introduction of carboxamides and sulfonamides, but the insertion of an amino group is also possible. Intramolecular transformations lead to the formation of either five-membered rings, such as carbazoles, indole derivatives, and benzo-fused nitrogen heterocycles, or six-membered rings, such as quinolinones and phenanthridinones. On the other hand, intermolecular reactions occur with complete regioselectivity, generally ortho to an appropriate directing group, which can be an oxime, a ketone, a carboxylic acid, or an amide.

 
  • 1 The Chemistry of Anilines, Parts 1 and 2. Rappoport Z. Wiley; New York 2007
  • 2 Giroux S. Bioorg. Med. Chem. Lett. 2013; 23: 394
  • 3 Surry DS, Buchwald SL. Chem. Sci. 2011; 2: 27
  • 4 Hartwig JF. Acc. Chem. Res. 2008; 41: 1534
  • 5 Evano G, Blanchard N, Toumi M. Chem. Rev. 2008; 108: 3054
  • 6 Qiao JX, Lam PYS, Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials. Hall DG. Wiley-VCH; Weinheim, Germany 2011. 1.
  • 7 Collet F, Dodd RH, Dauban P. Chem. Commun. (Cambridge) 2009; 5061
  • 8 Thansandote P, Lautens M. Chem.–Eur. J. 2009; 15: 5874
  • 9 Davies HML, Manning JR. Nature (London) 2008; 451: 417
  • 10 Zalatan DN, Du Bois J. Top. Curr. Chem. 2010; 292: 347
  • 11 Dick AR, Sanford MS. Tetrahedron 2006; 62: 2439
  • 12 He L, Chan PWH, Tsui W.-M, Yu W.-Y, Che C.-M. Org. Lett. 2004; 6: 2405
  • 13 Fructos MR, Trofimenko S, Díaz-Requejo MM, Pérez PJ. J. Am. Chem. Soc. 2006; 128: 11784
  • 14 Li Z, Capretto DA, Rahaman RO, He C. J. Am. Chem. Soc. 2007; 129: 12058
  • 15 Tsang WCP, Zheng N, Buchwald SL. J. Am. Chem. Soc. 2005; 127: 14560
  • 16 Thu H.-Y, Yu W.-Y, Che C.-M. J. Am. Chem. Soc. 2006; 128: 9048
  • 17 Fraunhoffer KJ, White MC. J. Am. Chem. Soc. 2007; 129: 7274
  • 18 Neumann JJ, Rakshit S, Dröge T, Glorius F. Angew. Chem. 2009; 121: 7024 Angew. Chem. Int. Ed. 2009; 48: 6892
  • 19 Yin G, Wu Y, Liu G. J. Am. Chem. Soc. 2010; 132: 11978
  • 20 He G, Zhao Y, Zhang S, Lu C, Chen G. J. Am. Chem. Soc. 2011; 133: 3
  • 21 Pan J, Su M, Buchwald SL. Angew. Chem. 2011; 123: 8806 Angew. Chem. Int. Ed. 2011; 50: 8647
  • 22 Tsang WCP, Munday RH, Brasche G, Zheng N, Buchwald SL. J. Org. Chem. 2008; 73: 7603
  • 23 Jordan-Hore JA, Johansson CCC, Gulias M, Beck EM, Gaunt MJ. J. Am. Chem. Soc. 2008; 130: 16184
  • 24 Youn SW, Bihn JH, Kim BS. Org. Lett. 2011; 13: 3738
  • 25 Wasa M, Yu J.-Q. J. Am. Chem. Soc. 2008; 130: 14058
  • 26 Miura T, Ito Y, Murakami M. Chem. Lett. 2009; 38: 328
  • 27 Mei T.-S, Wang X, Yu J.-Q. J. Am. Chem. Soc. 2009; 131: 10806
  • 28 He G, Lu C, Zhao Y, Nack WA, Chen G. Org. Lett. 2012; 14: 2944
  • 29 Nadres ET, Daugulis O. J. Am. Chem. Soc. 2012; 134: 7
  • 30 Tan Y, Hartwig JF. J. Am. Chem. Soc. 2010; 132: 3676
  • 31 Hsieh THH, Dong VM. Tetrahedron 2009; 65: 3062
  • 32 Xiao Q, Wang W.-H, Liu G, Meng F.-K, Chen J.-H, Yang Z, Shi Z.-J. Chem.–Eur. J. 2009; 15: 7292
  • 33 Kumar RK, Punniyamurthy T. RSC Adv. 2012; 2: 4616
  • 34 Zhou J, He J, Wang B, Yang W, Ren H. J. Am. Chem. Soc. 2011; 133: 6868
  • 35 Kumar RK, Ali MA, Punniyamurthy T. Org. Lett. 2011; 13: 2102
  • 36 Inamoto K, Saito T, Hiroya K, Doi T. J. Org. Chem. 2010; 75: 3900
  • 37 Inamoto K, Kawasaki J, Hiroya K, Kondo Y, Doi T. Chem. Commun. (Cambridge) 2012; 48: 4332
  • 38 Wang G.-W, Yuan T.-T, Li D.-D. Angew. Chem. Int. Ed. 2011; 50: 1380
  • 39 Xiao B, Gong T.-J, Xu J, Liu Z.-J, Liu L. J. Am. Chem. Soc. 2011; 133: 1466
  • 40 Ng K.-H, Chan ASC, Yu W.-Y. J. Am. Chem. Soc. 2010; 132: 12862
  • 41 Sun K, Li Y, Xiong T, Zhang J, Zhang Q. J. Am. Chem. Soc. 2011; 133: 1694
  • 42 Xiong T, Li Y, Lv Y, Zhang Q. Chem. Commun. (Cambridge) 2010; 46: 6831
  • 43 Xiong T, Li Y, Mao L, Zhang Q, Zhang Q. Chem. Commun. (Cambridge) 2012; 48: 2246
  • 44 Ng K.-H, Ng F.-N, Yu W.-Y. Chem. Commun. (Cambridge) 2012; 48: 11680
  • 45 Yoo EJ, Ma S, Mei T.-S, Chan KSL, Yu J.-Q. J. Am. Chem. Soc. 2011; 133: 7652
  • 46 Shrestha R, Mukherjee P, Tan Y, Litman ZC, Hartwig JF. J. Am. Chem. Soc. 2013; 135: 8480