Yu, J.-Q.: 2016 Science of Synthesis, 3a: Catalytic Transformations via C—H Activation 1 DOI: 10.1055/sos-SD-217-00074
Catalytic Transformations via C—H Activation 1

1.1.5 Vinylation Using a Palladium Catalyst

More Information

Book

Editor: Yu, J.-Q.

Authors: Carreira, E. M.; Decicco, C. P.; Fuerstner, A.; Koch, G.; Molander, G. A.; Schaumann, E.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.

Title: Catalytic Transformations via C—H Activation 1

Subtitle: C-C, C-N, C-O, C-Hal, and C-B Bond Formation

Print ISBN: 9783131711311; Online ISBN: 9783132403413; Book DOI: 10.1055/b-003-129295

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Type: Multivolume Edition

 


Abstract

This chapter covers methods for the vinylation of non-heteroaromatic arene C—H bonds with palladium catalysts. Both oxidative methods (dehydrogenative coupling of an arene with an alkene) and direct arylation methods (coupling of an arene with a vinyl halide or equivalent) are discussed. In many cases, directing groups are used to enhance reactivity and ensure site-selective vinylation. Examples of non-directed cases are also discussed. These vinylation methods are advantageous over other cross-coupling methods since pre-activation of the arene component (via an aryl halide or arylmetal species) is not necessary.

 
  • 1 The Mizoroki–Heck Reaction. Oestreich M. Wiley; Oxford, UK 2009
  • 2 Moritani I, Fujiwara Y. Tetrahedron Lett. 1967; 8: 1119
  • 3 Fujiwara Y, Moritani I, Matsuda M, Teranishi S. Tetrahedron Lett. 1968; 9: 3863
  • 4 Le Bras J, Muzart J. Chem. Rev. 2011; 111: 1170
  • 5 Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
  • 6 Daugulis O, Zaitsev VG, Shabashov D, Pham Q.-N, Lazareva A. Synlett 2006; 3382
  • 7 Li B.-J, Yang S.-D, Shi Z.-J. Synlett 2008; 949
  • 8 Boele MDK, van Strijdonck GPF, de Vries AHM, Kamer PCJ, de Vries JG, van Leeuwen PWNM. J. Am. Chem. Soc. 2002; 124: 1586
  • 9 Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
  • 10 Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
  • 11 Rousseau G, Breit B. Angew. Chem. Int. Ed. 2011; 50: 2450
  • 12 Lee GT, Jiang X, Prasad K, Repič O, Blacklock TJ. Adv. Synth. Catal. 2005; 347: 1921
  • 13 Wang J.-R, Yang C.-T, Liu L, Guo Q.-X. Tetrahedron Lett. 2007; 48: 5449
  • 14 Amatore C, Cammoun C, Jutand A. Adv. Synth. Catal. 2007; 349: 292
  • 15 Kim BS, Jang C, Lee DJ, Youn SW. Chem.–Asian J. 2010; 5: 2336
  • 16 Schmidt B, Elizarov N. Chem. Commun. (Cambridge) 2012; 48: 4350
  • 17 Liu X, Hii KK. J. Org. Chem. 2011; 76: 8022
  • 18 Nishikata T, Lipshutz BH. Org. Lett. 2010; 12: 1972
  • 19 Wrigglesworth JW, Cox B, Lloyd-Jones GC, Booker-Milburn KI. Org. Lett. 2011; 13: 5326
  • 20 Li D.-D, Yuan T.-T, Wang G.-W. Chem. Commun. (Cambridge) 2011; 47: 12789
  • 21 Miura M, Tsuda T, Satoh T, Pivsa-Art S, Nomura M. J. Org. Chem. 1998; 63: 5211
  • 22 Li J.-J, Mei T.-S, Yu J.-Q. Angew. Chem. Int. Ed. 2008; 47: 6452
  • 23 Rauf W, Thompson AL, Brown JM. Chem. Commun. (Cambridge) 2009; 3874
  • 24 Wang L, Liu S, Li Z, Yu Y. Org. Lett. 2011; 13: 6137
  • 25 Shao J, Chen W, Giulianotti MA, Houghten RA, Yu Y. Org. Lett. 2012; 14: 5452
  • 26 Xu Z, Xiang B, Sun P. Eur. J. Org. Chem. 2012; 3069
  • 27 García-Rubia A, Fernández-Ibáñez MÁ, Gómez Arrayás R, Carretero JC. Chem.–Eur. J. 2011; 17: 3567
  • 28 Yu M, Liang Z, Wang Y, Zhang Y. J. Org. Chem. 2011; 76: 4987
  • 29 García-Rubia A, Urones B, Gómez Arrayás R, Carretero JC. Angew. Chem. Int. Ed. 2011; 50: 10927
  • 30 Cong X, You J, Gao G, Lan J. Chem. Commun. (Cambridge) 2013; 49: 662
  • 31 Cai G, Fu Y, Li Y, Wan X, Shi Z. J. Am. Chem. Soc. 2007; 129: 7666
  • 32 Liang Z, Ju L, Xie Y, Huang L, Zhang Y. Chem.–Eur. J. 2012; 18: 15816
  • 33 Aoki S, Oyamada J, Kitamura T. Bull. Chem. Soc. Jpn. 2005; 78: 468
  • 34 Lu Y, Wang D.-H, Engle KM, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 5916
  • 35 Miura M, Tsuda T, Satoh T, Nomura M. Chem. Lett. 1997; 1103
  • 36 Wang D.-H, Engle KM, Shi B.-F, Yu J.-Q. Science (Washington, D. C.) 2009; 327: 315
  • 37 Engle KM, Wang D.-H, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 14137
  • 38 Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2010; 49: 6169
  • 39 Yu M, Xie Y, Xie C, Zhang Y. Org. Lett. 2012; 14: 2164
  • 40 Li G, Leow D, Wan L, Yu J.-Q. Angew. Chem. Int. Ed. 2013; 52: 1245
  • 41 Huang C, Chattopadhyay B, Gevorgyan V. J. Am. Chem. Soc. 2011; 133: 12406
  • 42 Wang C, Ge H. Chem.–Eur. J. 2011; 17: 14371
  • 43 Gandeepan P, Cheng C.-H. J. Am. Chem. Soc. 2012; 134: 5738
  • 44 Pan D, Yu M, Chen W, Jiao N. Chem.–Asian J. 2010; 5: 1090
  • 45 Pankajakshan S, Xu Y.-H, Cheng JK, Low MT, Loh T.-P. Angew. Chem. Int. Ed. 2012; 51: 5701
  • 46 Jia C, Lu W, Kitamura T, Fujiwara Y. Org. Lett. 1999; 1: 2097
  • 47 Yokota T, Tani M, Sakaguchi S, Ishii Y. J. Am. Chem. Soc. 2003; 125: 1476
  • 48 Dams M, De Vos DE, Celen S, Jacobs PA. Angew. Chem. Int. Ed. 2003; 42: 3512
  • 49 Kubota A, Emmert MH, Sanford MS. Org. Lett. 2012; 14: 1760
  • 50 Kim KH, Lee S, Kim SH, Lim CH, Kim JN. Tetrahedron Lett. 2012; 53: 5088
  • 51 Harada S, Yano H, Obora Y. ChemCatChem 2013; 5: 121
  • 52 Zhang Y.-H, Shi B.-F, Yu J.-Q. J. Am. Chem. Soc. 2009; 131: 5072
  • 53 Zhang X, Fan S, He C.-Y, Wan X, Min Q.-Q, Yang J, Jiang Z.-X. J. Am. Chem. Soc. 2010; 132: 4506
  • 54 Shi B.-F, Zhang Y.-H, Lam JK, Wang D.-H, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 460
  • 55 Willis MC, Claverie CK, Mahon MF. Chem. Commun. (Cambridge) 2002; 832
  • 56 Cruz ACF, Miller ND, Willis MC. Org. Lett. 2007; 9: 4391
  • 57 Geary LM, Hultin PG. Org. Lett. 2009; 11: 5478
  • 58 Geary LM, Hultin PG. Eur. J. Org. Chem. 2010; 5563
  • 59 Yagoubi M, Cruz ACF, Nichols PL, Elliott RL, Willis MC. Angew. Chem. Int. Ed. 2010; 49: 7958
  • 60 Zaitsev VG, Daugulis O. J. Am. Chem. Soc. 2005; 127: 4156
  • 61 Zhao Y, He G, Nack WA, Chen G. Org. Lett. 2012; 14: 2948
  • 62 Albicker M, Cramer N. Angew. Chem. Int. Ed. 2009; 48: 9139