Faber, K. et al.: 2015 Science of Synthesis: Biocatalysis in Organic Synthesis DOI: 10.1055/sos-SD-216-00001
Biocatalysis in Organic Synthesis 3

3.1 Dihydroxylation of Aromatics and Alkenes

More Information

Book

Editors: Faber, K.; Fessner, W.-D.; Turner, N. J.

Authors: Allen, C. C. R.; de Gonzalo, G.; Ellinger, J. J.; Ewing, T. A.; Faber, K.; Fernández-Lucas, J.; Flynn, C. M.; Fraaije, M. W.; García-Junceda, E.; Garrabou, X.; Gkotsi, D. S.; Glueck, S. M.; Goss, R. J. M.; Grogan, G.; Gröger, H.; Grüschow, S.; Hammer, S. C.; Hauer, B.; Herter, S.; Hilvert, D.; Hollmann, F.; Hormigo, D.; Hummel, W.; Molla, G.; Nestl, B. M.; Nolte, J. C.; Obexer, R.; Oroz-Guinea, I.; Patel, R. N.; Pollegioni, L.; Quin, M. B.; Schmidt-Dannert, C.; Smith, D. R. M.; Turner, N. J.; Urlacher, V. B.; van Berkel, W. J. H.; Woodley, J. M.

Title: Biocatalysis in Organic Synthesis

Print ISBN: 9783131746610; Online ISBN: 9783131974914; Book DOI: 10.1055/b-003-125814

Subjects: Organic Chemistry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Type: Multivolume Edition

 


Abstract

The use of ring-hydroxylating dioxygenase enzymes for the biotransformation of aromatic hydrocarbons, alkenes, and phenols to give chiral cis-dihydrodiol metabolites is of significant potential for the preparation of chiral precursors for organic synthesis. Many products are produced with high enantiomeric excess, and a wide number of biotransformations have been studied. This type of biotransformation is typically used to convert readily available starting materials into single enantiomer bioproducts in a single step. The enzymes are multicomponent systems comprising two or more protein subunits. Furthermore, there is a requirement for reducing equivalents (e.g., NADH) and therefore whole-cell biocatalysts are used, either as wild-type strains, mutants, or clones. Recently, there have been significant developments in the use of molecular biology methods to improve these biocatalysts. This review covers the approaches employed to perform specific types of biotransformation, namely arene, alkene, and phenol hydroxylation.

 
  • 1 Gibson DT, Koch JR, Kallio RE. Biochemistry 1968; 7: 2653
  • 2 Gibson DT, Cardini GE, Maseles FC, Kallio RE. Biochemistry 1970; 9: 1631
  • 3 Subramanian V, Liu TW, Yeh WK, Gibson DT. Biochem. Biophys. Res. Commun. 1979; 91: 1131
  • 4 Ensley BD, Gibson DT. J. Bacteriol. 1983; 155: 505
  • 5 Hudlicky T, Reed JW. Chem. Soc. Rev. 2009; 38: 3117
  • 6 Resnick SM, Lee K, Gibson DT. J. Ind. Microbiol. Biotechnol. 1996; 17: 438
  • 7 Ballard DGH, Courtis A, Shirley IM, Taylor SC. J. Chem. Soc., Chem. Commun. 1983; 954
  • 8 Gibson DT, Hensley M, Yoshioka H, Mabry TJ. Biochemistry 1970; 9: 1626
  • 9 Boyd DR, Sharma ND, Stevenson PJ, Blain M, McRoberts C, Hamilton JTG, Argudo JM, Mundi H, Kulakov LA, Allen CCR. Org. Biomol. Chem. 2011; 9: 1479
  • 10 Karlsson A, Parales JV, Parales RE, Gibson DT, Eklund H, Ramaswamy S. Science (Washington, D. C.) 2003; 299: 1039
  • 11 Ferraro DJ, Gakhar L, Ramaswamy S. Biochem. Biophys. Res. Commun. 2005; 338: 175
  • 12 Friemann R, Lee K, Brown EN, Gibson DT, Eklund H, Ramaswamy S. Acta Crystallogr., Sect. D 2009; 65: 24
  • 13 Kauppi B, Lee K, Carredano E, Parales RE, Gibson DT, Eklund H, Ramaswamy S. Structure (Oxford, U. K.) 1998; 6: 571
  • 14 Ferraro DJ, Okerlund AL, Mowers JC, Ramaswamy S. J. Bacteriol. 2006; 188: 6986
  • 15 Jeffrey AM, Yeh HJC, Jerina DM, Patel TR, Davey JF, Gibson DT. Biochemistry 1975; 14: 575
  • 16 Allen CCR, Boyd DR, Dalton H, Sharma ND, Brannigan I, Kerley NA, Sheldrake GN, Taylor SC. J. Chem. Soc., Chem. Commun. 1995; 117
  • 17 Gibson DT, Mahadevan V, Jerina DM, Yagi H, Yeh HJC. Science (Washington, D. C.) 1975; 189: 295
  • 18 Iwai S, Chai B, Sul WJ, Cole JR, Hashsham SA, Tiedje JM. ISME J. 2010; 4: 279
  • 19 Larkin MJ, Allen CCR, Kulakov LA, Lipscomb DA. J. Bacteriol. 1999; 181: 6200
  • 20 Boyd DR, Bugg TDH. Org. Biomol. Chem. 2006; 4: 181
  • 21 Boyd DR, Sharma ND, Byrne B, Hand MV, Malone JF, Sheldrake GN, Blacker J, Dalton H. J. Chem. Soc., Perkin Trans. 1 1998; 1935
  • 22 Boyd DR, Sharma ND, Barr SA, Dalton H, Chima J, Whited G, Seemayer R. J. Am. Chem. Soc. 1994; 116: 1147
  • 23 Boyd DR, Sheldrake GN. Nat. Prod. Rep. 1998; 15: 309
  • 24 Hudlicky T, Gonzalez D, Gibson DT. Aldrichimica Acta 1999; 32: 35
  • 25 Gibson DT, Parales RE. Curr. Opin. Biotechnol. 2000; 11: 236
  • 26 Boyd DR, Sharma ND, Allen CCR. Curr. Opin. Biotechnol. 2001; 12: 564
  • 27 Boyd DR, Dorrity MRJ, Hand MV, Malone JF, Sharma ND, Dalton H, Gray DJ, Sheldrake GN. J. Am. Chem. Soc. 1991; 113: 666
  • 28 Ensley BD, Ratzkin BJ, Osslund TD, Simon MJ, Wackett LP, Gibson DT. Science (Washington, D. C.) 1983; 222: 167
  • 29 Jenkins RO, Dalton H. FEMS Microbiol. Lett. 1985; 30: 227
  • 30 Vishniac W, Santer M. Bacteriol. Rev. 1957; 21: 195
  • 31 Allen CCR, Boyd DR, Hempenstall F, Larkin MJ, Sharma ND. Appl. Environ. Microbiol. 1999; 65: 1335
  • 32 Boyd DR, Sharma ND, Brannigan IN, Clarke DA, Dalton H, Haughey SA, Malone JF. Chem. Commun. (Cambridge) 1996; 2361
  • 33 Boyd DR, Sharma ND, Gunaratne N, Haughey SA, Kennedy MA, Malone JF, Allen CCR, Dalton H. Org. Biomol. Chem. 2003; 1: 984
  • 34 Fetzner S, Vogler B, Lingens F. FEMS Microbiol. Lett. 1993; 112: 151
  • 35 Boyd DR, Sharma ND, Carroll JG, Malone JF, Mackerracher DG, Allen CCR. Chem. Commun. (Cambridge) 1998; 683
  • 36 Sbircea S, Sharma ND, Clegg W, Harrington RW, Horton PN, Hursthouse MB, Apperley DC, Boyd DR, James SL. Chem. Commun. (Cambridge) 2008; 5538
  • 37 Lee K. FEMS Microbiol. Lett. 2006; 255: 316
  • 38 Kim D, Lee JS, Choi KY, Kim Y.-S, Choi JN, Kim S.-K, Chae J.-C, Zylstra GJ, Lee CH, Kim E. Enzyme Microb. Technol. 2007; 41: 221
  • 39 Boyd DR, Sharma ND, Malone JF, Allen CCR. Chem. Commun. (Cambridge) 2009; 3633
  • 40 Guzman L.-M, Belin D, Carson MJ, Beckwith J. J. Bacteriol. 1995; 177: 4121
  • 41 Zylstra GJ, Gibson DT. J. Biol. Chem. 1989; 264: 14940
  • 42 Argudo JM Ph.D. Thesis, Queenʼs University, Belfast 2010
  • 43 Boyd DR, Clarke D, Cleij MC, Hamilton JTG, Sheldrake GN. Monatsh. Chem. 2000; 131: 673
  • 44 Allen CCR Ph.D. Thesis, University of Warwick 1993
  • 45 Boyd DR, Sharma ND, Stevenson PJ, Chima J, Gray DJ, Dalton H. Tetrahedron Lett. 1991; 32: 3887
  • 46 Allen CCR, Boyd DR, Dalton H, Sharma ND, Haughey SA, McMordie RAS, McMurray BT, Sheldrake GN, Sproule K. J. Chem. Soc., Chem. Commun. 1995; 119
  • 47 Allen CCR, Boyd DR, Larkin MJ, Reid KA, Sharma ND, Wilson K. Appl. Environ. Microbiol. 1997; 63: 151
  • 48 OʼBrien XM, Parler JA, Lessard PA, Sinskey AJ. Appl. Microbiol. Biotechnol. 2002; 59: 389
  • 49 McMordie RAS Ph.D. Thesis, Queenʼs University, Belfast 1991
  • 50 Boyd DR, Dorrity MRJ, Malone JF, McMordie RAS, Sharma ND, Dalton H, Williams P. J. Chem. Soc., Perkin Trans. 1 1990; 489
  • 51 Allen CCR, Walker CE, Sharma ND, Kerley NA, Boyd DR, Dalton H. Biocatal. Biotransform. 2002; 20: 257
  • 52 Schröder M. Chem. Rev. 1980; 80: 187
  • 53 Allen CCR, Boyd DR, Dalton H. WO 1 996 011 282 A1, 1996
  • 54 Arthurs C, Raftery J, Whitby H, Whitehead R, Wind N, Stratford I. Bioorg. Med. Chem. Lett. 2007; 17: 5974
  • 55 Matveenko M, Willis A, Banwell M. Tetrahedron Lett. 2008; 49: 7018
  • 56 Varghese V, Hudlicky T. Angew. Chem. Int. Ed. 2014; 53: 1
  • 57 Boyd DR, Sharma ND, Acaru CA, Malone JF, OʼDowd CR, Allen CCR, Stevenson PJ. Org. Lett. 2010; 12: 2206
  • 58 Sakamoto T, Joern JM, Arisawa A, Arnold FH. Appl. Environ. Microbiol. 2001; 67: 3882
  • 59 Ang EL, Obbard JP, Zhao H. Appl. Microbiol. Biotechnol. 2009; 81: 1063
  • 60 Han J, Kim S.-Y, Jung J, Lim Y, Ahn J.-H, Kim S.-I, Hur H.-G. Appl. Environ. Microbiol. 2005; 71: 5354