Liu, G. : 2023 Science of Synthesis, 2023/1: Knowledge Updates 2023/1 DOI: 10.1055/sos-SD-147-00001
Knowledge Updates 2023/1

47.1.1.4.12 Synthesis of Alkenes by Palladium-Catalyzed Cross-Coupling Reactions with Carbene Precursors

More Information

Book

Editor: Liu, G.

Authors: Chen, P. ; Cheng, Z.; Gong, L.-Z. ; Ho, C.-Y.; Jiang, R. ; Jie, X. ; Lei, A. ; Lin, Z.; Liu, B.; Liu, G. ; Liu, Q. ; Liu, X.; Lu, Z. ; Raja, D.; Sayed, M. ; Su, W. ; Tang, S. ; Tao, R.; Wang, J. ; Wang, K. ; Wang, P.-S. ; Yang, P.; You, S.-L. ; Zhao, Y.; Zheng, Y.

Title: Knowledge Updates 2023/1

Print ISBN: 9783132455061; Online ISBN: 9783132455085; Book DOI: 10.1055/b000000844

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Knowledge Updates



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

This review describes the synthesis of multisubstituted alkenes through palladium-catalyzed cross-coupling reactions with carbene precursors. In the past decade, transition-metal-catalyzed cross couplings involving carbenes have witnessed remarkable development, including those that form alkenes as the products. These palladium-catalyzed coupling reactions are summarized here, according to the type of cross-coupling partners and the carbene precursors.

 
  • 1 Modern Carbonyl Olefination. Takeda T. Wiley-VCH; Weinheim, Germany 2004
  • 2 Handbook of Metathesis. Grubbs RH. Wiley-VCH; Weinheim, Germany 1993: 1–3
  • 3 Takahashi A, Kirio Y, Sodeoka M, Sasai H, Shibasaki M. J. Am. Chem. Soc. 1989; 111: 643
  • 4 Suzuki T, Higuchi H, Ohkita M, Tsuji T. Chem. Commun. (Cambridge) 2001; 1574
  • 6 Flynn AB, Ogilvie WW. Chem. Rev. 2007; 107: 4698
  • 7 Negishi E.-i, Huang Z, Wang G, Mohan S, Wang C, Hattori H. Acc. Chem. Res. 2008; 41: 1474
  • 8 de Frémont P, Marion N, Nolan SP. Coord. Chem. Rev. 2009; 253: 862
  • 9 Trnka TM, Grubbs RH. Acc. Chem. Res. 2001; 34: 18
  • 10 Barluenga J, Valdés C. Angew. Chem. Int. Ed. 2011; 50: 7486
  • 11 Shao Z, Zhang H. Chem. Soc. Rev. 2012; 41: 560
  • 12 Xiao Q, Zhang Y, Wang J. Acc. Chem. Res. 2013; 46: 236
  • 13 Xia Y, Qiu D, Wang J. Chem. Rev. 2017; 117: 13 810
  • 14 Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials. Hall DG. Wiley-VCH; Weinheim, Germany 2011
  • 15 Peng C, Wang Y, Wang J. J. Am. Chem. Soc. 2008; 130: 1566
  • 16 Tsoi Y.-T, Zhou Z, Chan ASC, Yu W.-Y. Org. Lett. 2010; 12: 4506
  • 17 Greenman KL, Carter DS, Van Vranken DL. Tetrahedron 2001; 57: 5219
  • 18 Yu W.-Y, Tsoi Y.-T, Zhou Z, Chan ASC. Org. Lett. 2009; 11: 469
  • 19 Peng C, Yan G, Wang Y, Jiang Y, Zhang Y, Wang J. Synthesis 2010; 4154
  • 20 Xia Y, Wang J. Chem. Soc. Rev. 2017; 46: 2306
  • 21 Bamford WR, Stevens TS. J. Chem. Soc. 1952; 4735
  • 22 Barluenga J, Moriel P, Valdés C, Aznar F. Angew. Chem. Int. Ed. 2007; 46: 5587
  • 23 Barluenga J, Tomás-Gamasa M, Moriel P, Aznar F, Valdés C. Chem.–Eur. J. 2008; 14: 4792
  • 24 Tréguier B, Hamze A, Provot O, Brion JD, Alami M. Tetrahedron Lett. 2009; 50: 6549
  • 25 Patel PK, Dalvadi JP, Chikhalia KH. RSC Adv. 2014; 4: 55 354
  • 26 Barluenga J, Florentino L, Aznar F, Valdés C. Org. Lett. 2011; 13: 510
  • 27 Luo H, Wu G, Xu S, Wang K, Wu C, Zhang Y, Wang J. Chem. Commun. (Cambridge) 2015; 51: 13 321
  • 28 Xiao Q, Ma J, Yang Y, Zhang Y, Wang J. Org. Lett. 2009; 11: 4732
  • 29 Zhao X, Jing J, Lu K, Zhang Y, Wang J. Chem. Commun. (Cambridge) 2010; 46: 1724
  • 30 Trost BM, Chan C, Ruhter G. J. Am. Chem. Soc. 1987; 109: 3486
  • 31 Sonogashira K, Tohda Y, Hagihara N. Tetrahedron Lett. 1975; 4467
  • 32 Zhou L, Ye F, Ma J, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2011; 50: 3510
  • 33 Barluenga J, Tomás-Gamasa M, Aznar F, Valdés C. Chem.–Eur. J. 2010; 16: 12 801
  • 34 Barluenga J, Escribano M, Moriel P, Aznar F, Valdés C. Chem.–Eur. J. 2009; 15: 13 291
  • 35 Liu X, Ma X, Huang Y, Gu Z. Org. Lett. 2013; 15: 4814
  • 36 Xia Y, Zhang Y, Wang J. ACS Catal. 2013; 3: 2586
  • 37 Pérez-Gómez M, Hernández-Ponte S, Bautista D, García-López J.-A. Chem. Commun. (Cambridge) 2017; 53: 2842
  • 38 Liu Z, Xia Y, Zhou S, Wang L, Zhang Y, Wang J. Org. Lett. 2013; 15: 5032
  • 39 Müller K, Faeh C, Diederich F. Science (Washington, D. C.) 2007; 317: 1881
  • 40 Furuya T, Kamlet AS, Ritter T. Nature (London) 2011; 473: 470
  • 41 Morandi B, Carreira EM. Angew. Chem. Int. Ed. 2010; 49: 938
  • 42 Liu C.-B, Meng W, Li F, Wang S, Nie J, Ma J.-A. Angew. Chem. Int. Ed. 2012; 51: 6227
  • 43 Luo H, Wu G, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2015; 54: 14 503
  • 44 Wang X, Xu Y, Deng Y, Zhou Y, Feng J, Ji G, Zhang Y, Wang J. Chem.–Eur. J. 2014; 20: 961
  • 45 Zhou Y, Ye F, Wang X, Xu S, Zhang Y, Wang J. J. Org. Chem. 2015; 80: 6109
  • 46 Ohe K, Yokoi T, Miki K, Nishino F, Uemura S. J. Am. Chem. Soc. 2002; 124: 526
  • 47 Chen L, Chen K, Zhu S. Chem 2018; 4: 1208
  • 48 Xia Y, Qu S, Xiao Q, Wang Z.-X, Qu P, Chen L, Liu Z, Tian L, Huang Z, Zhang Y, Wang J. J. Am. Chem. Soc. 2013; 135: 13 502
  • 49 Xia Y, Ge R, Chen L, Liu Z, Xiao Q, Zhang Y, Wang J. J. Org. Chem. 2015; 80: 7856
  • 50 Xia Y, Liu Z, Ge R, Xiao Q, Zhang Y, Wang J. Chem. Commun. (Cambridge) 2015; 51: 11 233
  • 51 Ping Y, Chang T, Wang K, Huo J, Wang J. Chem. Commun. (Cambridge) 2019; 55: 59
  • 52 Zheng Z, Wang Z, Wang Y, Zhang L. Chem. Soc. Rev. 2016; 45: 4448
  • 53 Gao Y, Wu G, Zhou Q, Wang J. Angew. Chem. Int. Ed. 2018; 57: 2716
  • 54 Zhu D, Chen L, Fan H, Yao Q, Zhu S. Chem. Soc. Rev. 2020; 49: 908
  • 55 Chen H, Huang L, Fu W, Liu X, Jiang H. Chem.–Eur. J. 2012; 18: 10 497
  • 56 Zeng X, Cheng G, Shen J, Cui X. Org. Lett. 2013; 15: 3022
  • 57 Roche M, Frison G, Brion JD, Provot O, Hamze A, Alami M. J. Org. Chem. 2013; 78: 8485
  • 58 Lingayya R, Vellakkaran M, Nagaiah K, Tadikamalla PR, Nanubolu JB. Chem. Commun. (Cambridge) 2017; 53: 1672
  • 59 McNeill E, Ritter T. Acc. Chem. Res. 2015; 48: 2330
  • 60 Holmes M, Schwartz LA, Krische MJ. Chem. Rev. 2018; 118: 6026
  • 61 Chen S, Wang J. Chem. Commun. (Cambridge) 2008; 4198
  • 62 Wang K, Chen S, Zhang H, Xu S, Ye F, Zhang Y, Wang J. Org. Biomol. Chem. 2016; 14: 3809
  • 63 Barluenga J, Tomás-Gamasa M, Aznar F, Valdés C. Adv. Synth. Catal. 2010; 352: 3235
  • 64 Zhou L, Ye F, Zhang Y, Wang J. Org. Lett. 2012; 14: 922
  • 65 Yang Q, Chai H, Liu T, Yu Z. Tetrahedron Lett. 2013; 54: 6485
  • 66 Xie Y, Zhang P, Zhou L. J. Org. Chem. 2016; 81: 2128
  • 67 Xiao Q, Wang B, Tian L, Yang Y, Ma J, Zhang Y, Chen S, Wang J. Angew. Chem. Int. Ed. 2013; 52: 9305
  • 68 Xia Y, Xia Y, Liu Z, Zhang Y, Wang J. J. Org. Chem. 2014; 79: 7711
  • 69 Li H, Li B.-J, Shi Z.-J. Catal. Sci. Technol. 2011; 1: 191
  • 70 Liron F, Oble J, Lorion MM, Poli G. Eur. J. Org. Chem. 2014; 5863
  • 71 Giri R, Shi B.-F, Engle KM, Maugel N, Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
  • 72 Wang P.-S, Lin H.-C, Zhou X.-L, Gong L.-Z. Org. Lett. 2014; 16: 3332
  • 73 Ping Y, Zhang S, Chang T, Wang J. J. Org. Chem. 2019; 84: 8275