40.1. 1.3.3.6 Synthesis of Amines by Pericyclic Reactions Involving C=N Units (Update 2020)
Buch
Herausgeber: Christmann, M.; Huang, Z.; Jiang, X.; Li, J.-J.; Oestreich, M.; Petersson, E. J.; Schaumann, E.; Wang, M.
Titel: Knowledge Updates 2020/1
Print ISBN: 9783132435582; Online ISBN: 9783132435605; Buch-DOI: 10.1055/b000000102
1st edition © 2020 Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Fachgebiete: Organische Chemie;Chemische Reaktionen, Katalyse;Organometallchemie;Chemische Labormethoden, Stöchiometrie
Science of Synthesis Knowledge Updates
Übergeordnete Publikation
Titel: Science of Synthesis
DOI: 10.1055/b-00000101
Reihenherausgeber: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.
Typ: Mehrbändiges Werk
Abstract


The synthesis of nitrogen heterocycles, such as piperidines and tetrahydroquinolines, with high chemo-, regio-, and stereoselectivity can be achieved via cycloaddition reactions that involve imine derivatives either as dienes or dienophiles. This topic was previously covered in Section 40.1.1.3.3, to which this chapter is an update, covering the literature from 2008 to 2019. The field has seen significant advances in recent years; this is particularly true for catalytic, enantioselective variants and new hetero-Diels–Alder variants using aza-o-quinone methides as reactive 1-azabutadienes. Both topics are therefore a special focus of this update.
Schlüsselwörter
aza-Diels–Alder reactions - imines - dienes - dienophiles - pericyclic reactions - piperidines - tetrahydroquinolines - [4 + 2] cycloaddition - Povarov reactions - Lewis acid catalysis - Brønsted acid catalysis - stereoselective synthesis- 20 Akiyama T, In: Science of Synthesis: Asymmetric Organocatalysis Maruoka K. Thieme Stuttgart 2012; 2. 196
- 25 Hatanaka Y, Nantaku S, Nishimura Y, Otsuka T, Sekikaw T. Chem. Commun. (Cambridge) 2017; 53: 8996
- 33 Yao Y, Zhu H.-J, Li F, Zhu C.-F, Luo Y.-F, Wu X, Kantchev EAB. Adv. Synth. Catal. 2017; 359: 3095
- 47 Lee A, Younai A, Price CK, Izquierdo J, Mishra RK, Scheidt KA. J. Am. Chem. Soc. 2014; 136: 10 589
- 48 Yang K.-C, Li Q.-Z, Liu Y, He Q.-Q, Liu Y, Leng H.-J, Jia A.-Q, Ramachandran S, Li J.-L. Org. Lett. 2018; 20: 7518
- 49 Liao H.-H, Chatupheeraphat A, Hsiao C.-C, Atodiresei I, Rueping M. Angew. Chem. Int. Ed. 2015; 54: 15 540
- 64 He L, Laurent G, Retailleau P, Folléas B, Brayer J.-L, Masson G. Angew. Chem. Int. Ed. 2013; 52: 11 088
- 66 Leca D, Gaggini F, Cassayre J, Loiseleur O, Pieneiazek SN, Luft JAR, Houk KN. J. Org. Chem. 2007; 72: 4284
- 71 Tseng C.-C, Yen W.-P, Tsai S.-E, Hu Y.-T, Takayama H, Kuo Y.-H, Wong FF. Eur. J. Org. Chem. 2018; 1567
- 75 Dibble DJ, Kurakake R, Wardrip AG, Bartlett A, Lopez R, Linares JA, Firstman M, Schmidt AM, Umerani MJ, Gorodetsky AA. Org. Lett. 2018; 20: 502