Marek, I. et al.: 2016 Science of Synthesis, 2016/2: Knowledge Updates 2016/2 DOI: 10.1055/sos-SD-102-00520
Knowledge Updates 2016/2

2.12.17 The Role of Solvents and Additives in Reactions of Samarium(II) Iodide and Related Reductants

More Information

Book

Editors: Marek, I.; Murai, T.; Stoltz, B. M.

Authors: Bruffaerts, J.; Chciuk, T.; Flowers, R.; Fujioka, H.; Ishii, A.; Jiang, X.; Kimura, T.; Li, Y.; Murai, K.; Nokami, T.; Tsubouchi, A.; Vasseur, A.; Xie, W.; Yoshimatsu, M.

Title: Knowledge Updates 2016/2

Print ISBN: 9783132208711; Online ISBN: 9783132403680; Book DOI: 10.1055/b-003-129344

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Knowledge Updates



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Carreira, E. M.; Decicco, C. P.; Fürstner, A.; Koch, G.; Molander, G. A.; Schaumann, E.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.

Type: Multivolume Edition

 


T. Chciuk; R. Flowers

Abstract

Zoom

The use of additives with samarium(II) iodide (SmI2) greatly impacts the rate, diastereoselectivity, and chemoselectivity of its reactions. Additives that are commonly utilized with samarium(II) iodide and other samarium(II)-based reductants can be classified into three major groups: (1) Lewis bases such as hexamethylphosphoric triamide (HMPA) and other electron-donor ligands and chelating ethers; (2) proton donors, such as water, alcohols, and glycols; and (3) inorganic additives such as nickel(II) iodide, iron(III) chloride, and lithium chloride. In addition, the solvent milieu can also play an important role in the reactivity of samarium(II) reductants, predominantly through changes in the coordination sphere of the metal. The main focus of this chapter is on the use of additives and solvent milieu to provide selective and efficient reactions, with at least one example being given for each subclass of samarium(II)-promoted reaction.

 
  • 1 Girard P, Namy J.-L, Kagan HB. J. Am. Chem. Soc. 1980; 102: 2693
  • 2 Szostak M, Fazakerley NJ, Parmar D, Procter DJ. Chem. Rev. 2014; 114: 5959
  • 6 Nicolaou KC, Ellery SP, Chen JS. Angew. Chem. Int. Ed. 2009; 48: 7140
  • 8 Dahlén A, Hilmersson G. Eur. J. Inorg. Chem. 2004; 3393
  • 10 Sadasivam DV, Choquette KA, Flowers II RA. J. Visualized Exp. 2013; 72: e4323
  • 12 Dahlén A, Hilmersson G. Eur. J. Inorg. Chem. 2004; 3020
  • 13 Teprovich Jr JA, Antharjanam PKS, Prasad E, Pesciotta EN, Flowers II RA. Eur. J. Inorg. Chem. 2008; 5015
  • 14 Namy J.-L, Colomb M, Kagan HB. Tetrahedron Lett. 1994; 35: 1723
  • 15 Chopade PR, Davis TA, Prasad E, Flowers II RA. Org. Lett. 2004; 6: 2685
  • 16 Inanaga J, Ishikawa M, Yamaguchi M. Chem. Lett. 1987; 16: 1485
  • 17 Akane N, Kanagawa Y, Nishiyama Y, Ishii Y. Chem. Lett. 1992; 21: 2431
  • 20 Kunishima M, Nakata D, Tanaka S, Hioki K, Tani S. Tetrahedron 2000; 56: 9927
  • 21 Lebrun A, Namy J.-L, Kagan HB. Tetrahedron Lett. 1993; 34: 2311
  • 22 Hélion F, Lannou M.-I, Namy J.-L. Tetrahedron Lett. 2003; 44: 5507
  • 23 Zörb A, Brückner R. Eur. J. Org. Chem. 2010; 4785
  • 24 Fuchs JR, Mitchell ML, Shabangi M, Flowers II RA. Tetrahedron Lett. 1997; 38: 8157
  • 27 Fukuzawa S.-i, Yahara Y, Kamiyama A, Hara M, Kikuchi S. Org. Lett. 2005; 7: 5809
  • 28 Fukuzawa S.-i, Tsuchimoto T, Kanai T. Chem. Lett. 1994; 23: 1981
  • 29 Maisano T, Tempest KE, Sadasivam DV, Flowers II RA. Org. Biomol. Chem. 2011; 9: 1714
  • 30 Collin J, Giuseppone N, Machrouhi F, Namy J.-L, Nief F. Tetrahedron Lett. 1999; 40: 3161
  • 31 Hanamoto T, Sugimoto Y, Sugino A, Inanaga J. Synlett 1994; 377
  • 32 Fukuzawa S.-i, Mutoh K, Tsuchimoto T, Hiyama T. J. Org. Chem. 1996; 61: 5400
  • 34 Evans WJ, Drummond DK, Zhang H, Atwood JL. Inorg. Chem. 1988; 27: 575
  • 35 Ankner T, Fridén-Saxin M, Pemberton N, Seifert T, Grøtli M, Luthman K, Hilmersson G. Org. Lett. 2010; 12: 2210
  • 36 Kim M, Knettle BW, Dahlén A, Hilmersson G, Flowers II RA. Tetrahedron 2003; 59: 10 397
  • 37 Brady ED, Clark DL, Keogh DW, Scott BL, Watkin JG. J. Am. Chem. Soc. 2002; 124: 7007
  • 38 Janjetovic M, Träff AM, Ankner T, Wettergren J, Hilmersson G. Chem. Commun. (Cambridge) 2013; 49: 1826
  • 39 Chciuk TV, Hilmersson G, Flowers II RA. J. Org. Chem. 2014; 79: 9441
  • 40 Namy J.-L, Collin J, Zhang J, Kagan HB. J. Organomet. Chem. 1987; 328: 81
  • 41 Evans WJ, Bloom I, Hunter WE, Atwood JL. J. Am. Chem. Soc. 1981; 103: 6507
  • 42 Evans WJ, Grate JW, Choi HW, Bloom I, Hunter WE, Atwood JL. J. Am. Chem. Soc. 1985; 107: 941
  • 45 Enemærke R, Hertz T, Skrydstrup T, Daasbjerg K. Chem.–Eur. J. 2000; 6: 3747
  • 46 Choquette KA, Sadasivam DV, Flowers II RA. J. Am. Chem. Soc. 2010; 132: 17 396
  • 47 Sadasivam DV, Teprovich Jr JA, Procter DJ, Flowers II RA. Org. Lett. 2010; 12: 4140
  • 48 Kusuda K, Inanaga J, Yamaguchi M. Tetrahedron Lett. 1989; 30: 2945
  • 49 Otsubo K, Inanaga J, Yamaguchi M. Tetrahedron Lett. 1987; 28: 4437
  • 54 Miller RS, Sealy JM, Shabangi M, Kuhlman ML, Fuchs JR, Flowers II RA. J. Am. Chem. Soc. 2000; 122: 7718
  • 56 Clayden J, Julia M. J. Chem. Soc., Chem. Commun. 1994; 2261
  • 58 Nishikawa K, Nakahara H, Shirokura Y, Nogata Y, Yoshimura Y, Umezawa T, Okino T, Matsuda F. Org. Lett. 2010; 12: 904
  • 59 Nagano T, Motoyoshiya J, Kakehi A, Nishii Y. Org. Lett. 2008; 10: 5453
  • 60 Dahlén A, Petersson A, Hilmersson G. Org. Biomol. Chem. 2003; 1: 2423
  • 61 Rivkin A, González-López de Turiso F, Nagashima T, Curran DP. J. Org. Chem. 2004; 69: 3719
  • 62 Iwasaki H, Eguchi T, Tsutsui N, Ohno H, Tanaka T. J. Org. Chem. 2008; 73: 7145
  • 66 Zhang X.-M, Shao H, Tu Y.-Q, Zhang F.-M, Wang S.-H. J. Org. Chem. 2012; 77: 8174
  • 68 Park HS, Kwon DW, Lee K, Kim YH. Tetrahedron Lett. 2008; 49: 1616
  • 69 Kabata M, Suzuki T, Takabe K, Yoda H. Tetrahedron Lett. 2006; 47: 1607
  • 70 Banerji A, Bandyopadhyay D, Basak B, Biswas PK, Banerji J, Chatterjee A. Bull. Chem. Soc. Jpn. 2007; 80: 1199
  • 72 McDonald CE, Ramsey JD, Sampsell DG, Butler JA, Cecchini MR. Org. Lett. 2010; 12: 5178
  • 73 McDonald CE, Ramsey JD, Sampsell DG, Anderson LA, Krebs JE, Smith SN. Tetrahedron 2013; 69: 2947
  • 75 Prasad E, Flowers II RA. J. Am. Chem. Soc. 2005; 127: 18 093
  • 78 Dupradeau F.-Y, Gaillard F, Beau J.-M. Carbohydr. Lett. 1999; 3: 317
  • 79 Duffy LA, Matsubara H, Procter DJ. J. Am. Chem. Soc. 2008; 130: 1136
  • 80 Szostak M, Spain M, Choquette KA, Flowers II RA, Procter DJ. J. Am. Chem. Soc. 2013; 135: 15 702
  • 81 Zhan Z.-P, Lang K, Liu F, Hu L.-m. Synth. Commun. 2004; 34: 3203
  • 82 Guazzelli G, De Grazia S, Collins KD, Matsubara H, Procter DJ. J. Am. Chem. Soc. 2009; 131: 7214
  • 83 Jensen CM, Lindsay KB, Taaning RH, Karaffa J, Hansen AM, Skrydstrup T. J. Am. Chem. Soc. 2005; 127: 6544
  • 84 Karaffa J, Lindsay KB, Skrydstrup T. J. Org. Chem. 2006; 71: 8219
  • 85 Hansen AM, Lindsay KB, Antharjanam PKS, Karaffa J, Daasbjerg K, Flowers II RA, Skrydstrup T. J. Am. Chem. Soc. 2006; 128: 9616
  • 86 Burchak ON, Philouze C, Chavant PY, Py S. Org. Lett. 2008; 10: 3021
  • 87 Cividino P, Py S, Delair P, Greene AE. J. Org. Chem. 2007; 72: 485
  • 89 Dahlén A, Hilmersson G, Knettle BW, Flowers II RA. J. Org. Chem. 2003; 68: 4870
  • 90 Davis TA, Chopade PR, Hilmersson G, Flowers II RA. Org. Lett. 2005; 7: 119
  • 92 Dahlén A, Sundgren A, Lahmann M, Oscarson S, Hilmersson G. Org. Lett. 2003; 5: 4085
  • 96 Szostak M, Sautier B, Spain M, Procter DJ. Org. Lett. 2014; 16: 1092
  • 97 Szostak M, Spain M, Procter DJ. Chem. Commun. (Cambridge) 2011; 47: 10 254
  • 98 Szostak M, Spain M, Eberhart AJ, Procter DJ. J. Am. Chem. Soc. 2014; 136: 2268
  • 100 Keck GE, Wager CA, Sell T, Wager TT. J. Org. Chem. 1999; 64: 2172
  • 101 David H, Afonso C, Bonin M, Doisneau G, Guillerez M.-G, Guibé F. Tetrahedron Lett. 1999; 40: 8557
  • 103 Johnston D, McCusker CM, Procter DJ. Tetrahedron Lett. 1999; 40: 4913
  • 106 Zhong Y.-W, Dong Y.-Z, Fang K, Izumi K, Xu M.-H, Lin G.-Q. J. Am. Chem. Soc. 2005; 127: 11 956
  • 107 Szostak M, Spain M, Sautier B, Procter DJ. Org. Lett. 2014; 16: 5694
  • 110 Chciuk TV, Boland BP, Flowers II RA. Tetrahedron Lett. 2015; 56: 3212
  • 111 Machrouhi F, Hamann B, Namy J.-L, Kagan HB. Synlett 1996; 633
  • 114 Reisman SE, Ready JM, Weiss MM, Hasuoka A, Hirata M, Tamaki K, Ovaska TV, Smith CJ, Wood JL. J. Am. Chem. Soc. 2008; 130: 2087
  • 116 Hamann-Gaudinet B, Namy J.-L, Kagan HB. Tetrahedron Lett. 1997; 38: 6585
  • 117 Hamann-Gaudinet B, Namy J.-L, Kagan HB. J. Organomet. Chem. 1998; 567: 39
  • 118 Hioki K, Kono K, Tani S, Kunishima M. Tetrahedron Lett. 1998; 39: 5229
  • 119 Concellón JM, Bernad PL, Huerta M, García-Granda S, Díaz MR. Chem.–Eur. J. 2003; 9: 5343
  • 120 Kunishima M, Hioki K, Kono K, Sakuma T, Tani S. Chem. Pharm. Bull. 1994; 42: 2190
  • 121 Kunishima M, Yoshimura K, Nakata D, Hioki K, Tani S. Chem. Pharm. Bull. 1999; 47: 1196
  • 122 Kunishima M, Tanaka S, Kono K, Hioki K, Tani S. Tetrahedron Lett. 1995; 36: 3707
  • 123 Kunishima M, Nakata D, Hioki K, Tani S. Chem. Pharm. Bull. 1998; 46: 187