Brauer, Jeremy A.: 2024 Men's Aesthetics: A Practical Guide to Minimally Invasive Treatment DOI: 10.1055/b-0043-198235

8 Keg to Six Pack: Fat and Cellulite Treatments

More Information

Book

Editor: Brauer, Jeremy A.

Authors: Aguilera, Shino Bay; Alam, Murad; Alexis, Andrew F.; Belaidi, Marisa; Bertucci, Vince; Brodsky, Merrick A.; Chang, Yunyoung C.; Chesnut, Cameron; Cotofana, Sebastian; Dutton, Jonathan J.; Erlendsson, Andrés M.; Friedmann, Daniel P.; Green, Jeremy B.; Hanna, Edith A.; Henry, Michelle; Hibler, Brian P.; Hsu, Derek; Keaney, Terrence C.; Lipp, Michael B.; MacGregor, Jennifer L.; Montes, José R.; Munavalli, Gilly; Pineiro, Mildred Lopez; Robinson, Deanne Mraz; Rossi, Anthony M.; MD, Nicole E. Rogers; Reserva, Jeave; Saedi, Nazanin; Sandre, Matthew K.; Soon, Seaver; Soro, Luis; Tung, Rebecca; Wang, Jordan V.; Xing, Yiping

Title: Men's Aesthetics: A Practical Guide to Minimally Invasive Treatment

Print ISBN: 9783132428379; Online ISBN: 9783132437197; Book DOI: 10.1055/b000000260

Subjects: Plastic, Reconstructive and Cosmetic Surgery;Minimalinvasive Surgery, Laser Surgery, Laparoscopy

Thieme Clinical Collections (English Language)



 
Deanne Mraz Robinson and Daniel P. Friedmann

Summary

The male demand for cosmetic procedures targeting localized deposits of subcutaneous adipose tissue has grown rapidly over the past decade. Current therapeutic options are less invasive, decreasing downtime and adverse events, while providing a more natural aesthetic appearance. This chapter highlights the numerous available modalities for subcutaneous fat reduction in male patients.

 
  • 1 American Society for Dermatologic Surgery. 2018 ASDS Consumer Survey on Cosmetic Dermatologic Procedures. 2019. Available at: https://www.asds.net/Portals/0/PDF/consumer-survey-2018-infographic.pdf/. 2019. Accessed April 8, 2019
  • 4 The American Society for Aesthetic Plastic Surgery. 2012 Cosmetic Surgery National Data Bank Statistics. 2013. Available at: https://www.surgery.org/sites/default/files/ASAPS-2012-Stats.pdf/. Accessed April 8, 2019
  • 5 The American Society for Aesthetic Plastic Surgery. 2017 Cosmetic Surgery National Data Bank Statistics. 2018 Available at: https://www.surgery.org/sites/default/files/ASAPS-Stats2017.pdf/. Accessed April 8, 2019
  • 6 Pulit SL, Karaderi T, Lindgren CM. Sexual dimorphisms in genetic loci linked to body fat distribution.. Biosci Rep 2017; 37 (1) BSR20160184 PubMed (PMID: 28073971)
  • 7 Ley CJ, Lees B, Stevenson JC. Sex- and menopause-associated changes in body-fat distribution.. Am J Clin Nutr 1992; 55 (5) 950-954 PubMed (PMID: 1570802)
  • 8 Björntorp P. The regulation of adipose tissue distribution in humans.. Int J Obes Relat Metab Disord 1996; 20 (4) 291-302 PubMed (PMID: 8680455)
  • 9 Björntorp P. Adipose tissue distribution and function.. Int J Obes 1991; 15 (Suppl. Suppl 2) 67-81 PubMed (PMID: 1794941)
  • 10 Björntorp P. Hormonal control of regional fat distribution.. Hum Reprod 1997; 12 (Suppl. Suppl 1) 21-25 PubMed (PMID: 9403318)
  • 11 Zamboni M, Rossi AP, Fantin F et al. Adipose tissue, diet and aging.. Mech Ageing Dev 2014; 136–137: 129-137 PubMed (PMID: 24321378)
  • 12 Kotani K, Tokunaga K, Fujioka S et al. Sexual dimorphism of age-related changes in whole-body fat distribution in the obese.. Int J Obes Relat Metab Disord 1994; 18 (4) 207-2 PubMed (PMID: 8044194)
  • 13 Shimokata H, Tobin JD, Muller DC, Elahi D, Coon PJ, Andres R. Studies in the distribution of body fat: I. Effects of age, sex, and obesity.. J Gerontol 1989; 44 (2) M66-M73 PubMed (PMID: 2921472)
  • 16 Munavalli GS, Panchaprateep R. Cryolipolysis for targeted fat reduction and improved appearance of the enlarged male breast.. Dermatol Surg 2015; 41 (9) 1043-1051 PubMed (PMID: 26218826)
  • 17 Pilanci O, Basaran K, Aydin HU, Cortuk O, Kuvat SV. Autologous fat injection into the pectoralis major as an adjunct to surgical correction of gynecomastia.. Aesthet Surg J 2015; 35 (3) NP54-NP61 PubMed (PMID: 25805289)
  • 18 Keaney TC, Naga LI. Men at risk for paradoxical adipose hyperplasia after cryolipolysis.. J Cosmet Dermatol 2016; 15 (4) 575-577 PubMed (PMID: 27432593)
  • 19 Querleux B, Cornillon C, Jolivet O, Bittoun J. Anatomy and physiology of subcutaneous adipose tissue by in vivo magnetic resonance imaging and spectroscopy: relationships with sex and presence of cellulite.. Skin Res Technol 2002; 8 (2) 118-124 PubMed (PMID: 12060477)
  • 20 Wat H, Wu DC, Goldman MP. Noninvasive body contouring: a male perspective.. Dermatol Clin 2018; 36 (1) 49-55 PubMed (PMID: 29108545)
  • 21 Brown SA, Rohrich RJ, Kenkel J, Young VL, Hoopman J, Coimbra M. Effect of low-level laser therapy on abdominal adipocytes before lipoplasty procedures.. Plast Reconstr Surg 2004; 113 (6) 1796-1804, discussion 1805–1806 PubMed (PMID: 15114147)
  • 22 Svedman KJ, Coldiron B, Coleman III WP et al. ASDS guidelines of care for tumescent liposuction.. Dermatol Surg 2006; 32 (5) 709-716 PubMed (PMID: 16706767)
  • 23 Klein JA. Cytochrome P450 3A4 and lidocaine metabolism. In: Klein JA, ed. Tumescent Technique: Tumescent Anesthesia and Microcannular Liposuction. St. Louis, MO: Mosby, Inc.; 2000:131–141
  • 24 Friedmann DP, Mishra V. Cryolipolysis and laser lipolysis: misnomers in cosmetic dermatology.. Dermatol Surg 2015; 41 (11) 1327-1328 PubMed (PMID: 26448311)
  • 25 Manstein D, Laubach H, Watanabe K, Farinelli W, Zurakowski D, Anderson RR. Selective cryolysis: a novel method of non-invasive fat removal.. Lasers Surg Med 2008; 40 (9) 595-604 PubMed (PMID: 18951424)
  • 26 Zelickson B, Egbert BM, Preciado J et al. Cryolipolysis for noninvasive fat cell destruction: initial results from a pig model.. Dermatol Surg 2009; 35 (10) 1462-1470 PubMed (PMID: 19614940)
  • 27 Stevens WG, Pietrzak LK, Spring MA. Broad overview of a clinical and commercial experience with CoolSculpting.. Aesthet Surg J 2013; 33 (6) 835-846 PubMed (PMID: 23858510)
  • 28 Klein KB, Zelickson B, Riopelle JG et al. Non-invasive cryolipolysis for subcutaneous fat reduction does not affect serum lipid levels or liver function tests.. Lasers Surg Med 2009; 41 (10) 785-790 PubMed (PMID: 20014252)
  • 29 Keaney TC, Gudas AT, Alster TS. Delayed onset pain associated with cryolipolysis treatment: a retrospective study with treatment recommendations.. Dermatol Surg 2015; 41 (11) 1296-1299 PubMed (PMID: 26445290)
  • 30 Coleman SR, Sachdeva K, Egbert BM, Preciado J, Allison J. Clinical efficacy of noninvasive cryolipolysis and its effects on peripheral nerves.. Aesthetic Plast Surg 2009; 33 (4) 482-488 PubMed (PMID: 19296153)
  • 31 Singh SM, Geddes ERC, Boutrous SG, Galiano RD, Friedman PM. Paradoxical adipose hyperplasia secondary to cryolipolysis: an underreported entity?. Lasers Surg Med 2015; 47 (6) 476-478 PubMed (PMID: 26096832)
  • 32 Jalian HR, Avram MM, Garibyan L, Mihm MC, Anderson RR. Paradoxical adipose hyperplasia after cryolipolysis.. JAMA Dermatol 2014; 150 (3) 317-319 PubMed (PMID: 24382640)
  • 33 Kilmer SL. Prototype CoolCup cryolipolysis applicator with over 40% reduced treatment time demonstrates equivalent safety and efficacy with greater patient preference.. Lasers Surg Med 2017; 49 (1) 63-68 PubMed (PMID: 27327898)
  • 34 Friedmann DP. Cryolipolysis for noninvasive contouring of the periumbilical abdomen with a nonvacuum conformable-surface applicator.. Dermatol Surg 2019; 45 (9) 1185-1190 PubMed (PMID: 30672856)
  • 35 Leal Silva H, Carmona Hernandez E, Grijalva Vazquez M, Leal Delgado S, Perez Blanco A. Noninvasive submental fat reduction using colder cryolipolysis.. J Cosmet Dermatol 2017; 16 (4) 460-465 PubMed (PMID: 28901051)
  • 36 Boey GE, Wasilenchuk JL. Enhanced clinical outcome with manual massage following cryolipolysis treatment: a 4-month study of safety and efficacy.. Lasers Surg Med 2014; 46 (1) 20-26 PubMed (PMID: 24338439)
  • 38 Garibyan L, Sipprell III WH, Jalian HR, Sakamoto FH, Avram M, Anderson RR. Three-dimensional volumetric quantification of fat loss following cryolipolysis.. Lasers Surg Med 2014; 46 (2) 75-80 PubMed (PMID: 24535759)
  • 39 Suh DH, Park JH, Kim BY, Lee SJ, Moon JH, Ryu HJ. Double stacking cryolipolysis treatment of the abdominal fat with use of a novel contoured applicator.. J Cosmet Laser Ther 2019; 21 (4) 238-242 PubMed (PMID: 30285505)
  • 40 Fatemi A. High-intensity focused ultrasound effectively reduces adipose tissue.. Semin Cutan Med Surg 2009; 28 (4) 257-262 PubMed (PMID: 20123425)
  • 41 Haar GT, Coussios C. High intensity focused ultrasound: physical principles and devices.. Int J Hyperthermia 2007; 23 (2) 89-104 PubMed (PMID: 17578335)
  • 42 Shalom A, Wiser I, Brawer S, Azhari H. Safety and tolerability of a focused ultrasound device for treatment of adipose tissue in subjects undergoing abdominoplasty: a placebo-control pilot study.. Dermatol Surg 2013; 39 (5) 744-751 PubMed (PMID: 23432811)
  • 43 Brown SA, Greenbaum L, Shtukmaster S, Zadok Y, Ben-Ezra S, Kushkuley L. Characterization of nonthermal focused ultrasound for noninvasive selective fat cell disruption (lysis): technical and preclinical assessment.. Plast Reconstr Surg 2009; 124 (1) 92-101 PubMed (PMID: 19346998)
  • 44 Teitelbaum SA, Burns JL, Kubota J et al. Noninvasive body contouring by focused ultrasound: safety and efficacy of the contour I device in a multicenter, controlled, clinical study.. Plast Reconstr Surg 2007; 120 (3) 779-789 PubMed (PMID: 17700131)
  • 45 Weiss RA, Bernardy J. Induction of fat apoptosis by a non-thermal device: mechanism of action of non-invasive high-intensity electromagnetic technology in a porcine model.. Lasers Surg Med 2019; 51 (1) 47-53 PubMed (PMID: 30549290)
  • 46 Duncan D, Dinev I. Noninvasive induction of muscle fiber hypertrophy and hyperplasia: effects of high-intensity focused electromagnetic field evaluated in an in-vivo porcine model—a pilot study.. Aesthet Surg J 2020; 40 (5) 568-574 PubMed (PMID: 31665217)
  • 47 Halaas Y, Bernardy J. Mechanism of nonthermal induction of apoptosis by high-intensity focused electromagnetic procedure: biochemical investigation in a porcine model.. J Cosmet Dermatol 2020; 19 (3) 605-611 PubMed (PMID: 31943721)
  • 48 Katz B, Bard R, Goldfarb R, Shiloh A, Kenolova D. Ultrasound assessment of subcutaneous abdominal fat thickness after treatments with a high-intensity focused electromagnetic field device: a multicenter study.. Dermatol Surg 2019; 45 (12) 1542-1548 PubMed (PMID: 30882507)
  • 49 Kinney BM, Lozanova P. High intensity focused electromagnetic therapy evaluated by magnetic resonance imaging: safety and efficacy study of a dual tissue effect based non-invasive abdominal body shaping.. Lasers Surg Med 2019; 51 (1) 40-46 PubMed (PMID: 30302767)
  • 50 Kent DE, Jacob CI. Simultaneous changes in abdominal adipose and muscle tissues following treatments by high-intensity focused electromagnetic (HIFEM) technology-based device: computed tomography evaluation.. J Drugs Dermatol 2019; 18 (11) 1098-1102 PubMed (PMID: 31738500)
  • 51 Kinney BM, Kent DE. MRI and CT assessment of abdominal tissue composition in patients after high-intensity focused electromagnetic therapy treatments: one-year follow-up.. Aesthet Surg J 2020; 40 (12) NP686-NP693 PubMed (PMID: 32103232)
  • 52 Franco W, Kothare A, Goldberg DJ. Controlled volumetric heating of subcutaneous adipose tissue using a novel radiofrequency technology.. Lasers Surg Med 2009; 41 (10) 745-750 PubMed (PMID: 20014265)
  • 53 de Felipe I, Redondo P. Animal model to explain fat atrophy using nonablative radiofrequency.. Dermatol Surg 2007; 33 (2) 141-145 PubMed (PMID: 17300598)
  • 54 Franco W, Kothare A, Ronan SJ, Grekin RC, McCalmont TH. Hyperthermic injury to adipocyte cells by selective heating of subcutaneous fat with a novel radiofrequency device: feasibility studies.. Lasers Surg Med 2010; 42 (5) 361-370 PubMed (PMID: 20583242)
  • 55 Kaplan H, Gat A. Clinical and histopathological results following TriPollar radiofrequency skin treatments.. J Cosmet Laser Ther 2009; 11 (2) 78-84 PubMed (PMID: 19408182)
  • 56 Lolis MS, Goldberg DJ. Radiofrequency in cosmetic dermatology: a review.. Dermatol Surg 2012; 38 (11) 1765-1776 PubMed (PMID: 22913399)
  • 57 Fajkošová K, Machovcová A, Onder M, Fritz K. Selective radiofrequency therapy as a non-invasive approach for contactless body contouring and circumferential reduction.. J Drugs Dermatol 2014; 13 (3) 291-296 PubMed (PMID: 24595574)
  • 58 Neira R, Arroyave J, Ramirez H et al. Fat liquefaction: effect of low-level laser energy on adipose tissue.. Plast Reconstr Surg 2002; 110 (3) 912-922, discussion 923–925 PubMed (PMID: 12172159)
  • 59 Medrado AP, Trindade E, Reis SRA, Andrade ZA. Action of low-level laser therapy on living fatty tissue of rats.. Lasers Med Sci 2006; 21 (1) 19-23 PubMed (PMID: 16565788)
  • 60 Caruso-Davis MK, Guillot TS, Podichetty VK et al. Efficacy of low-level laser therapy for body contouring and spot fat reduction.. Obes Surg 2011; 21 (6) 722-729 PubMed (PMID: 20393809)
  • 61 Avci P, Nyame TT, Gupta GK, Sadasivam M, Hamblin MR. Low-level laser therapy for fat layer reduction: a comprehensive review.. Lasers Surg Med 2013; 45 (6) 349-357 PubMed (PMID: 23749426)
  • 62 Esnouf A, Wright PA, Moore JC, Ahmed S. Depth of penetration of an 850 nm wavelength low level laser in human skin.. Acupunct Electrother Res 2007; 32 (1–2) 81-86 PubMed (PMID: 18077939)
  • 63 Jackson RF, Stern FA, Neira R, Ortiz-Neira CL, Maloney J. Application of low-level laser therapy for noninvasive body contouring.. Lasers Surg Med 2012; 44 (3) 211-217 PubMed (PMID: 22362380)
  • 64 Jackson RF, Dedo DD, Roche GC, Turok DI, Maloney RJ. Low-level laser therapy as a non-invasive approach for body contouring: a randomized, controlled study.. Lasers Surg Med 2009; 41 (10) 799-809 PubMed (PMID: 20014253)
  • 65 McRae E, Boris J. Independent evaluation of low-level laser therapy at 635 nm for non-invasive body contouring of the waist, hips, and thighs.. Lasers Surg Med 2013; 45 (1) 1-7 PubMed (PMID: 23355338)
  • 66 Savoia A, Landi S, Vannini F, Baldi A. Low-level laser therapy and vibration therapy for the treatment of localized adiposity and fibrous cellulite.. Dermatol Ther (Heidelb) 2013; 3 (1) 41-52 PubMed (PMID: 23888254)
  • 67 Jankowski M, Gawrych M, Adamska U, Ciescinski J, Serafin Z, Czajkowski R. Low-level laser therapy (LLLT) does not reduce subcutaneous adipose tissue by local adipocyte injury but rather by modulation of systemic lipid metabolism.. Lasers Med Sci 2017; 32 (2) 475-479 PubMed (PMID: 27384041)
  • 68 Decorato JW, Chen B, Sierra R. Subcutaneous adipose tissue response to a non-invasive hyperthermic treatment using a 1,060 nm laser.. Lasers Surg Med 2017; 49 (5) 480-489 PubMed (PMID: 28103642)
  • 69 Bass LS, Doherty ST. Safety and efficacy of a non-invasive 1060 nm diode laser for fat reduction of the abdomen.. J Drugs Dermatol 2018; 17 (1) 106-112 PubMed (PMID: 29320595)
  • 70 Sweeney DL, Wang EB, Austin E, Jagdeo J. Combined hyperthermic 1060 nm diode laser lipolysis with topical skin tightening treatment: case series.. J Drugs Dermatol 2018; 17 (7) 780-785 PubMed (PMID: 30005101)
  • 71 Schilling L, Saedi N, Weiss R.. 1060 nm diode hyperthermic laser lipolysis: the latest in non-invasive body contouring.. J Drugs Dermatol 2017; 16: 48-52 PubMed (PMID: 30005101)
  • 72 Rotunda AM. Injectable treatments for adipose tissue: terminology, mechanism, and tissue interaction.. Lasers Surg Med 2009; 41 (10) 714-720 PubMed (PMID: 20014257)
  • 73 Walker PS, Lee DR, Toth BA, Bowen B. Histological analysis of the effect of ATX-101 (deoxycholic acid injection) on subcutaneous fat: results from a phase 1 open-label study.. Dermatol Surg 2020; 46 (1) 70-77 PubMed (PMID: 30883481)
  • 74 Shridharani SM, Behr KL. ATX-101 (deoxycholic acid injection) treatment in men: insights from our clinical experience.. Dermatol Surg 2017; 43 (Suppl. Suppl 2) S225-S230 PubMed (PMID: 28902021)
  • 75 Grady B, Porphirio F, Rokhsar C. Submental alopecia at deoxycholic acid injection site.. Dermatol Surg 2017; 43 (8) 1105-1108 PubMed (PMID: 28291068)
  • 76 Lindgren AL, Welsh KM. Inadvertent intra-arterial injection of deoxycholic acid: a case report and proposed protocol for treatment.. J Cosmet Dermatol 2020; 19 (7) 1614-1618 PubMed (PMID: 31714002)
  • 77 Duncan D. Commentary on: Metabolic and structural effects of phosphatidylcholine and deoxycholate injections on subcutaneous fat: a randomized, controlled trial.. Aesthet Surg J 2013; 33 (3) 411-413 PubMed (PMID: 23515384)
  • 78 Duncan DI, Hasengschwandtner F. Lipodissolve for subcutaneous fat reduction and skin retraction.. Aesthet Surg J 2005; 25 (5) 530-543 PubMed (PMID: 19338857)
  • 79 Friedmann DP. A review of the aesthetic treatment of abdominal subcutaneous adipose tissue: background, implications, and therapeutic options.. Dermatol Surg 2015; 41 (1) 18-34 PubMed (PMID: 25521101)
  • 81 Tierney EP, Kouba DJ, Hanke CW. Safety of tumescent and laser-assisted liposuction: review of the literature.. J Drugs Dermatol 2011; 10 (12) 1363-1369 PubMed (PMID: 22134559)
  • 82 Klein JA. Tumescent technique for local anesthesia improves safety in large-volume liposuction.. Plast Reconstr Surg 1993; 92 (6) 1085-1098, discussion 1099–1100 PubMed (PMID: 8234507)
  • 83 Klein JA, Jeske DR. Estimated maximal safe dosages of tumescent lidocaine.. Anesth Analg 2016; 122 (5) 1350-1359 PubMed (PMID: 26895001)
  • 84 Klein JA. Surgical technique: microcannular tumescent liposuction. In: Klein JA, ed. Tumescent Technique: Tumescent Anesthesia and Microcannular Liposuction. St. Louis, MO: Mosby, Inc.; 2000:248–270
  • 85 Klein JA. Post-tumescent liposuction care. Open drainage and bimodal compression.. Dermatol Clin 1999; 17 (4) 881-889, viii PubMed (PMID: 10526718)
  • 86 Klein JA. Postliposuction care: open drainage and bimodal compression. In: Klein JA, ed. Tumescent Technique: Tumescent Anesthesia and Microcannular Liposuction. St. Louis, MO: Mosby, Inc.; 2000:281–293
  • 87 Hernandez TL, Kittelson JM, Law CK et al. Fat redistribution following suction lipectomy: defense of body fat and patterns of restoration.. Obesity (Silver Spring) 2011; 19 (7) 1388-1395 PubMed (PMID: 21475140)