Zebrowski, Patricia M. et al.: 2022 Stuttering and Related Disorders of Fluency DOI: 10.1055/b-0042-189416
Section II Processes Associated with Stuttering

5 Neural and Physiological Processes

More Information

Book

Editors: Zebrowski, Patricia M.; Anderson, Julie D.; Conture, Edward G.

Authors: Ames, Angharad; Arnold, Hayley S.; Beal, Deryk; Beilby, Janet; Below, Jennifer E.; Byrd, Courtney; Choi, Dahye; Coleman, Craig; DiLollo, Anthony; Eggers, Kurt; Fortier-Blanc, Julie; Franken, Marie-Christine; Garbarino, Julianne; Gerlach-Houck, Hope; Gillis, Corrin I.; Hall, Nancy E.; Hearne, Anna; Herring, Caryn; Jackson, Eric S.; Johnson, Kia Noelle; Jones, Robin; Kelly, Ellen M.; Kraft, Shelly Jo; LaSalle, Lisa; Logan, Kenneth J.; Maguire, Gerald; Millard, Sharon; Nil, Luc F. De; Ntourou, Katerina; Ratner, Nan Bernstein; Reichel, Isabella; Rodgers, Naomi; Scott, Kathleen Scaler; Singer, Cara M.; Sønsterud, Hilda; Tendera, Anna; Theys, Catherine; Tumanova, Victoria; Usler, Evan; Wagovich, Stacy; Yaruss, J. Scott; Zengin-Bolatkale, Hatun

Title: Stuttering and Related Disorders of Fluency

Print ISBN: 9781684202539; Online ISBN: 9781684202638; Book DOI: 10.1055/b000000273

Subjects: Otorhinolaryngology, Phoniatrics, Audiology

Thieme Clinical Collections (English Language)



 
Deryk Beal, Evan Usler, and Anna Tendera

Abstract

Over the past century, investigations into the underlying mechanisms of developmental stuttering have advanced considerably to reveal a complex neurophysiology. A greater understanding of the neural and physiological processes associated with stuttering is relevant not only for those with a natural curiosity of the theoretical neurophysiological underpinnings of the disorder but also for those who seek to improve client education and treatment. A clear description of the neurophysiology of stuttering will shed light on potential causes, developmental trajectories, and may improve the effectiveness of stuttering treatment. The purpose of this chapter is to describe and discuss the neural and physiological processes underlying developmental stuttering. The chapter begins with an introduction to how the brain controls stuttering, followed by a multileveled analysis across the various levels of physiology: (1) perceptual disfluency; (2) articulatory, laryngeal, and respiratory dynamics; (3) neuromuscular activation; (4) electrocortical activation; and (5) brain regions and networks. The chapter concludes with a discussion of the theoretical and treatment implications of these findings, as well as a glance into potential future research directions regarding the neural and physiological processes of developmental stuttering.

 
  • 3 Chang S-E, Guenther FH. Involvement of the cortico-basal ganglia-thalamocortical loop in developmental stuttering.. Front Psychol 2020; 10: 3088 PubMed (PMID: 32047456)
  • 4 Smith A, Weber C. How stuttering develops: the multifactorial dynamic pathways theory.. J Speech Lang Hear Res 2017; 60 (9) 2483-2505 PubMed (PMID: 28837728)
  • 5 Travis LE, Johnson W. Stuttering and the concept of handedness.. Psychol Rev 1934; 41 (6) 534-562 (PMID: NOT_FOUND)
  • 6 Etchell AC, Civier O, Ballard KJ, Sowman PF. A systematic literature review of neuroimaging research on developmental stuttering between 1995 and 2016.. J Fluency Disord 2018; 55: 6-45 PubMed (PMID: 28778745)
  • 7 Smith A. Stuttering: A unified approach to a multifactorial, dynamic disorder. In: Ratner NB, Healey EC, eds. Stuttering Research and Practice: Bridging the Gap. New York, NY: Psychology Press; 1999:27–44
  • 8 Kleinow J, Smith A. Influences of length and syntactic complexity on the speech motor stability of the fluent speech of adults who stutter.. J Speech Lang Hear Res 2000; 43 (2) 548-559 PubMed (PMID: 10757703)
  • 9 Jackson ES, Tiede M, Beal D, Whalen DH. The impact of social-cognitive stress on speech variability, determinism, and stability in adults who do and do not stutter.. J Speech Lang Hear Res 2016; 59 (6) 1295-1314 PubMed (PMID: 27936276)
  • 10 Walsh B, Mettel KM, Smith A. Speech motor planning and execution deficits in early childhood stuttering.. J Neurodev Disord 2015; 7 (1) 27 PubMed (PMID: 26300988)
  • 11 Usler E, Smith A, Weber C. A lag in speech motor coordination during sentence production is associated with stuttering persistence in young children.. J Speech Lang Hear Res 2017; 60 (1) 51-61 PubMed (PMID: 28056137)
  • 13 Hall KD, Yairi E. Fundamental frequency, jitter, and shimmer in preschoolers who stutter.. J Speech Hear Res 1992; 35 (5) 1002-1008 PubMed (PMID: 1447911)
  • 14 Subramanian A, Yairi E, Amir O. Second formant transitions in fluent speech of persistent and recovered preschool children who stutter.. J Commun Disord 2003; 36 (1) 59-75 PubMed (PMID: 12493638)
  • 15 Zocchi L, Estenne M, Johnston S, Del Ferro L, Ward ME, Macklem PT. Respiratory muscle incoordination in stuttering speech.. Am Rev Respir Dis 1990; 141 (6) 1510-1515 PubMed (PMID: 2350093)
  • 16 Peters HF, Boves L. Coordination of aerodynamic and phonatory processes in fluent speech utterances of stutterers.. J Speech Hear Res 1988; 31 (3) 352-361 PubMed (PMID: 3172752)
  • 17 Tichenor S, Leslie P, Shaiman S, Yaruss JS. Speaker and observer perceptions of physical tension during stuttering.. Folia Phoniatr Logop 2017; 69 (4) 180-189 PubMed (PMID: 29421786)
  • 18 Kazamel M, Warren PP. History of electromyography and nerve conduction studies: a tribute to the founding fathers.. J Clin Neurosci 2017; 43: 54-60 PubMed (PMID: 28629678)
  • 19 Shapiro AI. An electromyographic analysis of the fluent and dysfluent utterances of several types of stutterers.. J Fluency Disord 1980; 5 (3) 203-231 (PMID: NOT_FOUND)
  • 22 Walsh B, Smith A. Oral electromyography activation patterns for speech are similar in preschoolers who do and do not stutter.. J Speech Lang Hear Res 2013; 56 (5) 1441-1454 PubMed (PMID: 23838991)
  • 23 Fibiger S. Stuttering explained as a physiological tremor.. STL-QPSR 1971; 2 (3) 1-24
  • 24 Denny M, Smith A. Gradations in a pattern of neuromuscular activity associated with stuttering.. J Speech Hear Res 1992; 35 (6) 1216-1229 PubMed (PMID: 1494267)
  • 25 Kelly EM, Smith A, Goffman L. Orofacial muscle activity of children who stutter: a preliminary study.. J Speech Hear Res 1995; 38 (5) 1025-1036 (PMID: 8558872)
  • 26 Alm PA, Karlsson R, Sundberg M, Axelson HW. Hemispheric lateralization of motor thresholds in relation to stuttering.. PLoS One 2013; 8 (10) e76824 PubMed (PMID: 24146930)
  • 27 Barwood CHS, Murdoch BE, Goozee JV, Riek S. Investigating the neural basis of stuttering using transcranial magnetic stimulation: preliminary case discussions.. Speech Lang Hear 2013; 16 (1) 18-27 (PMID: NOT_FOUND)
  • 28 Indefrey P, Levelt WJM. The spatial and temporal signatures of word production components.. Cognition 2004; 92 (1) (–) (2) 101-144 PubMed (PMID: 15037128)
  • 29 Jenson D, Reilly KJ, Harkrider AW, Thornton D, Saltuklaroglu T. Trait related sensorimotor deficits in people who stutter: an EEG investigation of μ rhythm dynamics during spontaneous fluency.. Neuroimage Clin 2018; 19: 690-702 PubMed (PMID: 29872634)
  • 30 Mersov A-M, Jobst C, Cheyne DO, De Nil L. Sensorimotor oscillations prior to speech onset reflect altered motor networks in adults who stutter.. Front Hum Neurosci 2016; 10: 443 PubMed (PMID: 27642279)
  • 31 Daliri A, Max L. Electrophysiological evidence for a general auditory prediction deficit in adults who stutter.. Brain Lang 2015; 150: 37-44 PubMed (PMID: 26335995)
  • 32 Daliri A, Max L. Modulation of auditory responses to speech vs. nonspeech stimuli during speech movement planning.. Front Hum Neurosci 2016; 10: 234 PubMed (PMID: 27242494)
  • 33 Arnstein D, Lakey B, Compton RJ, Kleinow J. Preverbal error-monitoring in stutterers and fluent speakers.. Brain Lang 2011; 116 (3) 105-115 PubMed (PMID: 21277014)
  • 34 Piispala J, Määttä S, Pääkkönen A, Bloigu R, Kallio M, Jansson-Verkasalo E. Atypical brain activation in children who stutter in a visual Go/Nogo task: an ERP study.. Clin Neurophysiol 2017; 128 (1) 194-203 PubMed (PMID: 27919012)
  • 35 Prescott J. Event-related potential indices of speech motor programming in stutterers and non-stutterers.. Biol Psychol 1988; 27 (3) 259-273 PubMed (PMID: 3254731)
  • 36 Vanhoutte S, Santens P, Cosyns M et al. Increased motor preparation activity during fluent single word production in DS: a correlate for stuttering frequency and severity.. Neuropsychologia 2015; 75: 1-10 PubMed (PMID: 26004061)
  • 37 Vanhoutte S, Cosyns M, van Mierlo P et al. When will a stuttering moment occur? The determining role of speech motor preparation.. Neuropsychologia 2016; 86: 93-102 PubMed (PMID: 27106391)
  • 38 Beal DS, Cheyne DO, Gracco VL, Quraan MA, Taylor MJ, De Nil LF. Auditory evoked fields to vocalization during passive listening and active generation in adults who stutter.. Neuroimage 2010; 52 (4) 1645-1653 PubMed (PMID: 20452437)
  • 39 Beal DS, Quraan MA, Cheyne DO, Taylor MJ, Gracco VL, De Nil LF. Speech-induced suppression of evoked auditory fields in children who stutter.. Neuroimage 2011; 54 (4) 2994-3003 PubMed (PMID: 21095231)
  • 40 Sowman PF, Crain S, Harrison E, Johnson BW. Lateralization of brain activation in fluent and non-fluent preschool children: a magnetoencephalographic study of picture-naming.. Front Hum Neurosci 2014; 8: 354 PubMed (PMID: 24904388)
  • 41 Mazoyer B, Zago L, Jobard G et al. Gaussian mixture modeling of hemispheric lateralization for language in a large sample of healthy individuals balanced for handedness.. PLoS One 2014; 9 (6) e101165 PubMed (PMID: 24977417)
  • 42 Beal DS, Lerch JP, Cameron B, Henderson R, Gracco VL, De Nil LF. The trajectory of gray matter development in Broca’s area is abnormal in people who stutter.. Front Hum Neurosci 2015; 9: 89 PubMed (PMID: 25784869)
  • 44 Sörös P, Sokoloff LG, Bose A, McIntosh AR, Graham SJ, Stuss DT. Clustered functional MRI of overt speech production.. Neuroimage 2006; 32 (1) 376-387 PubMed (PMID: 16631384)
  • 45 Tourville JA, Guenther FH. The DIVA model: a neural theory of speech acquisition and production.. Lang Cogn Process 2011; 26 (7) 952-981 PubMed (PMID: 23667281)
  • 47 Beal DS, Gracco VL, Brettschneider J, Kroll RM, De Nil LF. A voxel-based morphometry (VBM) analysis of regional grey and white matter volume abnormalities within the speech production network of children who stutter.. Cortex 2013; 49 (8) 2151-2161 PubMed (PMID: 23140891)
  • 49 Garnett EO, Chow HM, Nieto-Castañón A, Tourville JA, Guenther FH, Chang S-E. Anomalous morphology in left hemisphere motor and premotor cortex of children who stutter.. Brain 2018; 141 (9) 2670-2684 PubMed (PMID: 30084910)
  • 50 Chang S-E, Erickson KI, Ambrose NG, Hasegawa-Johnson MA, Ludlow CL. Brain anatomy differences in childhood stuttering.. Neuroimage 2008; 39 (3) 1333-1344 PubMed (PMID: 18023366)
  • 51 Sommer M, Koch MA, Paulus W, Weiller C, Büchel C. Disconnection of speech-relevant brain areas in persistent developmental stuttering.. Lancet 2002; 360 (9330) 380-383 PubMed (PMID: 12241779)
  • 52 Watkins KE, Smith SM, Davis S, Howell P. Structural and functional abnormalities of the motor system in developmental stuttering.. Brain 2008; 131 (Pt 1) 50-59 PubMed (PMID: 17928317)
  • 53 Belyk M, Kraft SJ, Brown S. Stuttering as a trait or state - an ALE meta-analysis of neuroimaging studies.. Eur J Neurosci 2015; 41 (2) 275-284 PubMed (PMID: 25350867)
  • 54 Metzger FL, Auer T, Helms G et al. Shifted dynamic interactions between subcortical nuclei and inferior frontal gyri during response preparation in persistent developmental stuttering.. Brain Struct Funct 2018; 223 (1) 165-182 PubMed (PMID: 28741037)
  • 55 Walsh B, Tian F, Tourville JA, Yücel MA, Kuczek T, Bostian AJ. Hemodynamics of speech production: an fNIRS investigation of children who stutter.. Sci Rep 2017; 7 (1) 4034 PubMed (PMID: 28642548)
  • 56 Salmelin R, Schnitzler A, Schmitz F, Freund HJ. Single word reading in developmental stutterers and fluent speakers.. Brain 2000; 123 (Pt 6) 1184-1202 PubMed (PMID: 10825357)
  • 57 Neef NE, Bütfering C, Anwander A, Friederici AD, Paulus W, Sommer M. Left posterior-dorsal area 44 couples with parietal areas to promote speech fluency, while right area 44 activity promotes the stopping of motor responses.. Neuroimage 2016; 142: 628-644 PubMed (PMID: 27542724)
  • 58 Braun AR, Varga M, Stager S et al. Altered patterns of cerebral activity during speech and language production in developmental stuttering. An H2(15)O positron emission tomography study.. Brain 1997; 120 (Pt 5) 761-784 PubMed (PMID: 9183248)
  • 59 Neef NE, Hoang TNL, Neef A, Paulus W, Sommer M. Speech dynamics are coded in the left motor cortex in fluent speakers but not in adults who stutter.. Brain 2015; 138 (Pt 3) 712-725 PubMed (PMID: 25595146)
  • 60 Harrewijn A, Schel MA, Boelens H, Nater CM, Haggard P, Crone EA. Children who stutter show reduced action-related activity in the rostral cingulate zone.. Neuropsychologia 2017; 96: 213-221 PubMed (PMID: 28115192)
  • 61 Neef NE, Anwander A, Bütfering C et al. Structural connectivity of right frontal hyperactive areas scales with stuttering severity.. Brain 2018; 141 (1) 191-204 PubMed (PMID: 29228195)
  • 62 Neumann K, Preibisch C, Euler HA et al. Cortical plasticity associated with stuttering therapy.. J Fluency Disord 2005; 30 (1) 23-39 PubMed (PMID: 15769497)
  • 64 Green JR, Nip ISB. Some organization principles in early speech development. In: Maassen B, van Lieshout P, eds. Speech Motor Control: New developments in basic and applied research. Oxford: Oxford University Press; 2010:171–188 (PMID: NOT_FOUND;INVALID_JOURNAL)
  • 65 Hatfield BD. Brain dynamics and motor behavior: a case for efficiency and refinement for superior performance.. Kinesiol Rev (Champaign) 2018; 7 (1) 42-50 (PMID: NOT_FOUND)
  • 67 Walden TA, Frankel CB, Buhr AP, Johnson KN, Conture EG, Karrass JM. Dual diathesis-stressor model of emotional and linguistic contributions to developmental stuttering.. J Abnorm Child Psychol 2012; 40 (4) 633-644 PubMed (PMID: 22016200)
  • 69 Bohland JW, Bullock D, Guenther FH. Neural representations and mechanisms for the performance of simple speech sequences.. J Cogn Neurosci 2010; 22 (7) 1504-1529 PubMed (PMID: 19583476)
  • 70 Civier O, Bullock D, Max L, Guenther FH. Computational modeling of stuttering caused by impairments in a basal ganglia thalamo-cortical circuit involved in syllable selection and initiation.. Brain Lang 2013; 126 (3) 263-278 PubMed (PMID: 23872286)
  • 72 Yada Y, Tomisato S, Hashimoto R-I. Online cathodal transcranial direct current stimulation to the right homologue of Broca’s area improves speech fluency in people who stutter.. Psychiatry Clin Neurosci 2019; 73 (2) 63-69 PubMed (PMID: 30379387)
  • 73 Garnett EO, Chow HM, Choo AL, Chang S-E. Stuttering severity modulates effects of non-invasive brain stimulation in adults who stutter.. Front Hum Neurosci 2019; 13: 411 PubMed (PMID: 31824276)
  • 74 Chesters J, Möttönen R, Watkins KE. Transcranial direct current stimulation over left inferior frontal cortex improves speech fluency in adults who stutter.. Brain 2018; 141 (4) 1161-1171 PubMed (PMID: 29394325)
  • 75 Maguire GA, Nguyen DL, Simonson KC, Kurz TL. The pharmacologic treatment of stuttering and its neuropharmacologic basis.. Front Neurosci 2020; 14: 158 PubMed (PMID: 32292321)
  • 76 Chow HM, Garnett EO, Li H et al. Linking lysosomal enzyme targeting genes and energy metabolism with altered gray matter volume in children with persistent stuttering.. Neurobiol Lang 2020; 1 (3) 365-380
  • 77 Kubikova L, Bosikova E, Cvikova M, Lukacova K, Scharff C, Jarvis ED. Basal ganglia function, stuttering, sequencing, and repair in adult songbirds.. Sci Rep 2014; 4: 6590 PubMed (PMID: 25307086)
  • 4a Chang SE, Garnett EO, Etchell A, Chow HM. Functional and neuroanatomical bases of developmental stuttering: current insights.. Neuroscientist 2019; 25 (6) 566-582 PubMed (PMID: 30264661)
  • 1a Etchell AC, Civier O, Ballard KJ, Sowman PF. A systematic literature review of neuroimaging research on developmental stuttering between 1995 and 2016.. J Fluency Disord 2018; 55: 6-45 PubMed (PMID: 28778745)
  • 2a Guenther FH. Neural control of speech. Cambridge, MA: MIT Press; 2006
  • 3a Smith A, Weber C. How stuttering develops: the multifactorial dynamic pathways theory.. J Speech Lang Hear Res 2017; 60 (9) 2483-2505 PubMed (PMID: 28837728)