Subscribe to RSS

DOI: 10.1590/0004-282X-ANP-2021-0038
Ultrasonographic assessment of lower limb muscle architecture in children with early-stage Duchenne muscular dystrophy
Avaliação ultrassonográfica da arquitetura muscular dos membros inferiores em crianças com distrofia muscular de Duchenne em estágio inicial
ABSTRACT
Background: Muscle imaging methods such as ultrasound and magnetic resonance imaging have been used for many years to determine the dystrophic process in muscular dystrophies. However, the knowledge regarding muscle architecture in children at early-stage Duchenne muscular dystrophy (DMD) with different functional levels is limited. Objective: To explore the effect of functional level on muscle architectural properties in children with early stage DMD and the difference between DMD and typically developing (TD) peers. Methods: Thirty children with DMD (15 Grade 1 and 15 Grade 2 according to the Vignos Scale) and 5 TD peers were included. Ultrasound imaging was used to measure muscle thickness (MT), fascicle length (FL), and pennation angle (PA) of vastus lateralis (VL) and medial gastrocnemius (MG) muscles bilaterally. Results: The MT and FL values for VL, and MT, FL and PA values for MG muscles were higher in children with DMD compared with those of TD peers (p<0.05). The FL of VL, and MT and FL of GM muscles of children with DMD Grade 2 were higher than those of children with DMD Grade 1 (p<0.05). Conclusions: MT and FL are increased in children with DMD compared with TD peers. Additionally, muscle architecture seems to be affected even at the early stages of the disease.
RESUMO
Antecedentes: Métodos de imagem muscular, como ultrassom e ressonância magnética, têm sido usados há muitos anos para determinar o processo distrófico em distrofias musculares. No entanto, o conhecimento a respeito da arquitetura muscular em crianças com distrofia muscular de Duchenne (DMD) em estágio inicial, com diferentes níveis funcionais, é limitado. Objetivo: Explorar o efeito do nível funcional nas propriedades arquitetônicas do músculo em crianças com DMD em estágio inicial e a diferença entre DMD e seus pares em desenvolvimento típico (DT). Métodos: Trinta crianças com DMD (15 Grau 1 e 15 Grau 2 de acordo com a Escala de Vignos) e cinco colegas DT foram incluídos. A ultrassonografia foi usada para medir a espessura muscular (EM), o comprimento do fascículo (FL) e o ângulo de penetração (PA) dos músculos vasto lateral (VL) e gastrocnêmio medial (MG) bilateralmente. Resultados: Os valores de EM e FL para VL e os valores de EM, FL e PA para músculos MG foram maiores em crianças com DMD em comparação com os de seus pares DT (p<0,05). O FL do VL e o EM e o FL dos músculos GM de crianças com DMD Grau 2 foram maiores do que aqueles de crianças com DMD Grau 1 (p<0,05). Conclusões: TM e FL estão aumentados em crianças com DMD em comparação com seus pares DT. Além disso, a arquitetura muscular parece ser afetada mesmo nos estágios iniciais da doença.
Keywords:
Muscles - Ultrasonography - Muscular Dystrophies - Architecture - Physical Functional PerformancePalavras-chave:
Músculos - Ultrassonografia - Distrofias Musculares - Arquitetura - Desempenho Físico FuncionalAuthors’ contributions:
NB: conceptualization, investigation, writing-original draft; AK: conceptualization, interpretation of data, revising draft version; IAG: investigation, formal analysis, writing-original draft; OY: conceptualization, methodology, writing-original draft; HT: supervision, interpretation of data, revising draft version; LO: conceptualization, investigation, revising draft version. All authors approved the final version of this manuscript.
Publication History
Received: 28 January 2021
Accepted: 03 August 2021
Article published online:
06 February 2023
© 2022. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Emery AE. Population frequencies of inherited neuromuscular diseases-a world survey. Neuromuscul Disord 1991; Jan; 1 (01) 19-29 https://doi.org/10.1016/0960-8966(91)90039-u
- 2 Mendell JR, Shilling C, Leslie ND, Flanigan KM, al-Dahhak R, Gastier-Foster J. et al. Evidence-based path to newborn screening for Duchenne muscular dystrophy. Ann Neurol 2012; Mar; 71 (03) 304-313 https://doi.org/10.1002/ana.23528
- 3 Hoffman EP, Brown Jr RH, Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 1987; Dec; 51 (06) 919-928 https://doi.org/10.1016/0092-8674(87)90579-4
- 4 Emery AE. The muscular dystrophies. Lancet 2002; Feb; 359(9307) 687-695 https://doi.org/10.1016/S0140-6736(02)07815-7
- 5 Manzur AY, Kinali M, Muntoni F. Update on the management of Duchenne muscular dystrophy. Arch Dis Child 2008; Nov; 93 (11) 986-990 https://doi.org/10.1136/adc.2007.118141
- 6 Simon NG, Noto Y-i, Zaidman CM. Skeletal muscle imaging in neuromuscular disease. J Clin Neurosci 2016; Nov; 33: 1-10 https://doi.org/10.1016/j.jocn.2016.01.041
- 7 Kim HK, Merrow AC, Shiraj S, Wong BL, Horn PS, Laor T. Analysis of fatty infiltration and inflammation of the pelvic and thigh muscles in boys with Duchenne muscular dystrophy (DMD): grading of disease involvement on MR imaging and correlation with clinical assessments. Pediatr Radiol 2013; Oct; 43 (10) 1327-1335 https://doi.org/10.1007/s00247-013-2696-z
- 8 Scholten R, Pillen S, Verrips A, Zwarts MJ. Quantitative ultrasonography of skeletal muscles in children: normal values. Muscle Nerve 2003; Jun; 27 (06) 693-698 https://doi.org/10.1002/mus.10384
- 9 Pillen S, Verrips A, van Alfen N, Arts IMP, Sie LTL, Zwarts MJ. Quantitative skeletal muscle ultrasound: diagnostic value in childhood neuromuscular disease. Neuromuscul Disord 2007; Jul; 17 (07) 509-516 https://doi.org/10.1016/j.nmd.2007.03.008
- 10 Blazevich AJ, Cannavan D, Coleman DR, Coleman DR, Horne S. Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles. J Appl Physiol (1985) 2007; Nov; 103 (05) 1565-1575 https://doi.org/10.1152/japplphysiol.00578.2007
- 11 Phillips MF, Quinlivan RC, Edwards RH, Calverley PM. Changes in spirometry over time as a prognostic marker in patients with Duchenne muscular dystrophy. Am J Respir Crit Care Med 2001; Dec; 164 (12) 2191-2194 https://doi.org/10.1164/ajrccm.164.12.2103052
- 12 Alkan H, Mutlu A, Firat T, Bulut N, Karaduman AA, Yilmaz OT. Effects of functional level on balance in children with Duchenne Muscular Dystrophy. Eur J Paediatr Neurol 2017; Jul; 21 (04) 635-638 https://doi.org/10.1016/j.ejpn.2017.02.005
- 13 Nunes MF, Hukuda ME, Favero FM, Oliveira AB, Voos MC, Caromano FA. Relationship between muscle strength and motor function in Duchenne muscular dystrophy. Arq Neuro-Psiquiatr 2016; Jun; 74 (07) 530-535 https://doi.org/10.1590/0004-282X20160085
- 14 Jansen M, van Alfen N, van der Sanden MWN, van Dijk JP, Pillen S, de Groot IJM. Quantitative muscle ultrasound is a promising longitudinal follow-up tool in Duchenne muscular dystrophy. Neuromuscul Disord 2012; Apr; 22 (04) 306-317 https://doi.org/10.1016/j.nmd.2011.10.020
- 15 Zaidman CM, Wu JS, Kapur K, Pasternak A, Madabusi L, Yim S. et al. Quantitative muscle ultrasound detects disease progression in Duchenne muscular dystrophy. Ann Neurol 2017; May; 81 (05) 633-640 https://doi.org/10.1002/ana.24904
- 16 Morse C, Smith J, Denny A, Tweedale J, Searle ND. Gastrocnemius medialis muscle architecture and physiological cross sectional area in adult males with Duchenne muscular dystrophy. J Musculoskelet Neuronal Interact 2015; Jun; 15 (02) 154-160
- 17 Vignos P, Archibald K. Maintenance of ambulation in childhood muscular dystrophy. J Chronic Dis 1960; Aug; 12: 273-290 https://doi.org/10.1016/0021-9681(60)90105-3
- 18 Florence JM, Pandya S, King WM, Robison JD, Signore LC, Wentzell M. et al. Clinical trials in Duchenne dystrophy: standardization and reliability of evaluation procedures. Phys Ther 1984; Jan; 64 (01) 41-45 https://doi.org/10.1093/ptj/64.1.41
- 19 Hogrel J-Y, Payan CA, Ollivier G, Tanant V, Attarian S, Couillandre A. et al. Development of a French isometric strength normative database for adults using quantitative muscle testing. Arch Phys Med Rehabil 2007; Oct; 88 (10) 1289-1297 https://doi.org/10.1016/j.apmr.2007.07.011
- 20 Stuberg WA, Metcalf W. Reliability of quantitative muscle testing in healthy children and in children with Duchenne muscular dystrophy using a hand-held dynamometer. Phys Ther 1988; Jun; 68 (06) 977-982 https://doi.org/10.1093/ptj/68.6.977
- 21 Mazzone E, Martinelli D, Berardinelli A, Messina S, D’Amico A, Vasco G. et al. North Star Ambulatory Assessment, 6-minute walk test and timed items in ambulant boys with Duchenne muscular dystrophy. Neuromuscul Disord 2010; Nov; 20 (11) 712-716 https://doi.org/10.1016/j.nmd.2010.06.014
- 22 ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med 2002; Jul; 166 (01) 111-117 https://doi.org/10.1164/ajrccm.166.1.at1102
- 23 Kaya A, Kara M, Tiftik T, Tezcan ME, Ozel S, Ersöz M. et al. Ultrasonographic evaluation of the muscle architecture in patients with systemic lupus erythematosus. Clin Rheumatol 2013; 32 (08) 1155-1160 https://doi.org/10.1007/s10067-013-2249-8
- 24 Karamanidis K, Arampatzis A. Mechanical and morphological properties of human quadriceps femoris and triceps surae muscle-tendon unit in relation to aging and running. J Biomech 2006; 39 (03) 406-417 https://doi.org/10.1016/j.jbiomech.2004.12.017
- 25 Mukaka MM. A guide to appropriate use of correlation coefficient in medical research. Malawi Med J 2012; Sep; 24 (03) 69-71
- 26 Mathur S, Lott DJ, Senesac C, Germain SA, Vohra RS, Sweeney HL. et al. Age-related differences in lower-limb muscle cross-sectional area and torque production in boys with Duchenne muscular dystrophy. Arch Phys Med Rehabil 2010; Jul; 91 (07) 1051-1058 https://doi.org/10.1016/j.apmr.2010.03.024
- 27 Jones D, Round J, Edwards R, Grindwood SR, Tofts PS. Size and composition of the calf and quadriceps muscles in Duchenne muscular dystrophy: a tomographic and histochemical study. J Neurol Sci 1983; Aug; 60 (02) 307-322 https://doi.org/10.1016/0022-510x(83)90071-0
- 28 Lovering RM, Shah SB, Pratt SJ, Gong W, Chen Y. Architecture of healthy and dystrophic muscles detected by optical coherence tomography. Muscle Nerve 2013; Apr; 47 (04) 588-590 https://doi.org/10.1002/mus.23711
- 29 Beenakker EA, Maurits NM, Fock JM, Brouwer OF, van der Hoeven JH. Functional ability and muscle force in healthy children and ambulant Duchenne muscular dystrophy patients. Eur J Paediatr Neurol 2005; Nov; 9 (06) 387-393 https://doi.org/10.1016/j.ejpn.2005.06.004
- 30 Martini J, Voos MC, Hukuda ME, Dutra de Resende MB, Caromano FA. Compensatory movements during functional activities in ambulatory children with Duchenne muscular dystrophy. Arq Neuro-Psiquiatr 2014; Jan; 72 (01) 5-11 https://doi.org/10.1590/0004-282X20130196