Subscribe to RSS
DOI: 10.1055/s-2008-1038110
Nichtinvasive Beatmung und körperliche Belastung bei Patienten mit COPD
Non-Invasive Ventilation and Physical Exercise in Patients with COPDPublication History
eingereicht 21.12.2007
akzeptiert 14.1.2008
Publication Date:
05 March 2008 (online)

Zusammenfassung
Der Einsatz einer nichtinvasiven Beatmung (noninvasive ventilation = NIV) zur Verbesserung der körperlichen Belastung bei Patienten mit COPD wurde in der Vergangenheit in einer Vielzahl von Studien untersucht. Grundsätzlich muss unterschieden werden, ob die NIV während der körperlichen Belastung appliziert wird und somit direkt die Belastbarkeit beeinflusst oder ob eine intermittierende, meist nächtliche NIV indirekt zu einem Anstieg der körperlichen Leistungsfähigkeit führt. Mehrere Arbeiten zeigten, dass der direkte Einsatz einer NIV während körperlicher Belastung zu einer Steigerung der Belastbarkeit bei gleichzeitiger Reduktion der belastungsinduzierten Dyspnoe führt. Des Weiteren konnten gute Trainingsergebnisse erzielt werden, wenn das körperliche Training mit NIV unterstützt wurde. Allerdings gibt es interindividuelle Unterschiede, was die Toleranz und die positive Beeinflussung der Belastbarkeit und der Dyspnoe betrifft. In den meisten Studien der direkten Anwendung wurden COPD-Patienten ohne Indikation zur Langzeitanwendung der NIV mit meist niedrigen Beatmungsdrücken ventiliert, was zu unterschiedlichen Ergebnissen führte. Dagegen war bei hyperkapnischen COPD-Patienten der Einsatz einer NIV mit hohen Inspirationsdrücken im Hinblick auf eine Belastungssteigerung meist effektiver. Die intermittierende NIV führte nach Studienergebnissen ebenfalls zu einer positiven Beeinflussung der Belastbarkeit bei COPD-Patienten, wenngleich auch hier unterschiedliche Ergebnisse bei sehr verschiedenen Beatmungsstrategien mit einer großen Varianz der angewandten Beatmungsdrücke erzielt wurden. Sowohl bei der direkten als auch bei der intermittierenden Applikation der NIV kamen mehrere Formen zum Einsatz: CPAP, pressure support ventilation, proportional assist ventilation und zuletzt eine kontrollierte NIV. Dies erschwert eine konklusive Aussage darüber, ob und wie eine NIV die Belastbarkeit bei COPD-Patienten beeinflusst. Somit gilt es in der Zukunft genau zu definieren, welche Untergruppen von COPD-Patienten von einer NIV in welchem Modus und mit welcher Einstellung profitieren.
Abstract
The use of non-invasive ventilation (NIV) to improve physical activity in COPD patients has been addressed in several clinical investigations in the past. In general, NIV can be applied directly during exercise, but also intermittently when used for long-term treatment thereby aiming at improving physical activity during spontaneous breathing. There is increasing evidence that NIV enhances exercise capacity in COPD patients with a reduction of exercise-induced dyspnea when applied during exertion. Furthermore, physical training has been shown to produce positive results when training was performed under NIV-aided conditions. However, the results regarding tolerance of NIV, exercise ability and dyspnea are individually different. In most studies where NIV was applied during exercise, patients had no indication for long-term NIV, and patients were ventilated with low inspiratory pressures, which produced varying results. In contrast, the use of higher inspiratory pressures in hypercapnic COPD patients was more effective in enhancing exercise capacity. The intermittent application of NIV also positively affects exercise capacity in COPD patients, although different results were achieved with different ventilator strategies, mainly with a variety of inspiratory pressure levels. Different ventilation modes were used for NIV to aid exercise and for the intermittent approach in addition to different settings: CPAP, pressure support ventilation, proportional assist ventilation and controlled NIV. Therefore, it is still unclear how to define the best technique for NIV to be used in order to enhance exercise capability in COPD patients. Future studies are needed to define which subgroup of patients benefit from NIV in view of its effects on exercise. Further studies should also be aimed at clarifying which mode and which ventilator settings are most beneficial in improving exercise capability in COPD patients.
Literatur
- 1
Rabe K F, Hurd S, Anzueto A. et al .
Global strategy for the diagnosis, management, and prevention of chronic obstructive
pulmonary disease: GOLD executive summary.
Am J Respir Crit Care Med.
2007;
176
532-555
MissingFormLabel
- 2
Lopez A D, Shibuya K, Rao C. et al .
Chronic obstructive pulmonary disease: current burden and future projections.
Eur Respir J.
2006;
27
397-412
MissingFormLabel
- 3
Ambrosino N, Strambi S.
New strategies to improve exercise tolerance in chronic obstructive pulmonary disease.
Eur Respir J.
2004;
24
313-322
MissingFormLabel
- 4
Nici L, Donner C, Wouters E. et al .
American Thoracic Society/European Respiratory Society statement on pulmonary rehabilitation.
Am J Respir Crit Care Med.
2006;
173
1390-1413
MissingFormLabel
- 5
Agusti A GN, Noguera A, Sauleda J. et al .
Systemic effects of chronic obstructive pulmonary disease.
Eur Respir J.
2003;
21
347-360
MissingFormLabel
- 6
Gan W Q, Man S FP, Senthilselvan A. et al .
Association between chronic obstructive pulmonary disease and systemic inflammation:
a systematic review and a meta-analysis.
Thorax.
2004;
59
574-580
MissingFormLabel
- 7
Similowski T, Agusti A, MacNee W. et al .
The potential impact of anaemia of chronic disease in COPD.
Eur Respir J.
2006;
27
390-396
MissingFormLabel
- 8
Vrieze A, de Greef M HG, Wijkstra P J. et al .
Low bone mineral density in COPD patients related to worse lung function, low weight
and decreased fat-free mass.
Osteoporos Int.
2007;
18
1197-1202
MissingFormLabel
- 9
Sin D D, Man S FP.
Chronic obstructive pulmonary disease as a risk factor for cardiovascular morbidity
and mortality.
Proc Am Thorac Soc.
2005;
2
8-11
MissingFormLabel
- 10
Buch P, Friberg J, Scharling H. et al .
Reduced lung function and risk of atrial fibrillation in the Copenhagen City Heart
Study.
Eur Respir J.
2003;
21
1012-1016
MissingFormLabel
- 11
Mador M J, Bozkanat E.
Skeletal muscle dysfunction in chronic obstructive pulmonary disease.
Respir Res.
2001;
2
216-224
MissingFormLabel
- 12
Saey D, Michaud A, Couillard A. et al .
Contractile fatigue, muscle morphometry, and blood lactate in chronic obstructive
pulmonary disease.
Am J Respir Crit Care Med.
2005;
171
1109-1115
MissingFormLabel
- 13
Casaburi R, Porszasz J, Burns M R. et al .
Physiologic benefits of exercise training in rehabilitation of patients with severe
chronic obstructive pulmonary disease.
Am J Respir Crit Care Med.
1997;
155
1541-1551
MissingFormLabel
- 14
Anonymous .
International Consensus Conferences in Intensive Care Medicine: noninvasive positive
pressure ventilation in acute Respiratory failure.
Am J Respir Crit Care Med.
2001;
163
283-291
MissingFormLabel
- 15
Mehta S, Hill N S.
Noninvasive ventilation.
Am J Respir Crit Care Med.
2001;
163
540-577
MissingFormLabel
- 16
Simonds A K.
Home ventilation.
Eur Respir J Suppl.
2003;
47
38s-46s
MissingFormLabel
- 17
Simonds A K, Elliott M W.
Outcome of domiciliary nasal intermittent positive pressure ventilation in restrictive
and obstructive disorders.
Thorax.
1995;
50
604-609
MissingFormLabel
- 18
Simonds A K, Muntoni F, Heather S. et al .
Impact of nasal ventilation on survival in hypercapnic Duchenne muscular dystrophy.
Thorax.
1998;
53
949-952
MissingFormLabel
- 19
Bourke S C, Williams T L, Bullock R E. et al .
Non-invasive ventilation in motor neuron disease: current UK practice.
Amyotroph Lateral Scler Other Motor Neuron Disord.
2002;
3
145-149
MissingFormLabel
- 20
Bach J R.
Amyotrophic lateral sclerosis: prolongation of life by noninvasive respiratory AIDS.
Chest.
2002;
122
92-98
MissingFormLabel
- 21
Dreher M, Rauter I, Storre J H. et al .
When should home mechanical ventilation be started in patients with different neuromuscular
disorders?.
Respirology.
2007;
12
749-753
MissingFormLabel
- 22
Kolodziej M A, Jensen L, Rowe B. et al .
Systematic review of noninvasive positive pressure ventilation in severe stable COPD.
Eur Respir J.
2007;
30
293-306
MissingFormLabel
- 23
Clini E, Sturani C, Rossi A. et al .
The Italian multicentre study on noninvasive ventilation in chronic obstructive pulmonary
disease patients.
Eur Respir J.
2002;
20
529-538
MissingFormLabel
- 24
Casanova C, Celli B R, Tost L. et al .
Long-term controlled trial of nocturnal nasal positive pressure ventilation in patients
with severe COPD.
Chest.
2000;
118
1582-1590
MissingFormLabel
- 25
Wijkstra P J, Lacasse Y, Guyatt G H. et al .
A meta-analysis of nocturnal noninvasive positive pressure ventilation in patients
with stable COPD.
Chest.
2003;
124
337-343
MissingFormLabel
- 26
Windisch W, Vogel M, Sorichter S. et al .
Normocapnia during nIPPV in chronic hypercapnic COPD reduces subsequent spontaneous
PaCO2.
Respir Med.
2002;
96
572-579
MissingFormLabel
- 27
Windisch W, Kostic S, Dreher M. et al .
Outcome of patients with stable COPD receiving controlled noninvasive positive pressure
ventilation aimed at a maximal reduction of Pa(CO2).
Chest.
2005;
128
657-662
MissingFormLabel
- 28
Windisch W, Dreher M, Storre J H. et al .
Nocturnal non-invasive positive pressure ventilation: Physiological effects on spontaneous
breathing.
Respir Physiol Neurobiol.
2006;
150
251-260
MissingFormLabel
- 29
Budweiser S, Jorres R A, Riedl T. et al .
Predictors of survival in COPD patients with chronic hypercapnic respiratory failure
receiving noninvasive home ventilation.
Chest.
2007;
131
1650-1658
MissingFormLabel
- 30
Kenn K, Schoenheit-Kenn U, Bösl T. et al .
Effects of Pulmonary Rehabilitation Including Exercise Training in Patients With Indication
For Noninvasive Ventilation Therapy.
AJRCCM.
2002;
Vol 165, Nr. 8
A735
MissingFormLabel
- 31
Schönhofer B, Zimmermann C, Abramek P. et al .
Non-invasive mechanical ventilation improves walking distance but not quadriceps strength
in chronic respiratory failure.
Respir Med.
2003;
97
818-824
MissingFormLabel
- 32
Diaz O, Begin P, Andresen M. et al .
Physiological and clinical effects of diurnal noninvasive ventilation in hypercapnic
COPD.
Eur Respir J.
2005;
26
1016-1023
MissingFormLabel
- 33
Hul A van’t, Kwakkel G, Gosselink R.
The acute effects of noninvasive ventilatory support during exercise on exercise endurance
and dyspnea in patients with chronic obstructive pulmonary disease: a systematic review.
J Cardiopulm Rehabil.
2002;
22
290-297
MissingFormLabel
- 34
Kakkar R K, Berry R B.
Positive airway pressure treatment for obstructive sleep apnea.
Chest.
2007;
132
1057-1072
MissingFormLabel
- 35
Winck J C, Azevedo L F, Costa-Pereira A. et al .
Efficacy and safety of non-invasive ventilation in the treatment of acute cardiogenic
pulmonary edema - a systematic review and meta-analysis.
Crit Care.
2006;
10
R69
MissingFormLabel
- 36
O'Donnell D E, Sanii R, Younes M.
Improvement in exercise endurance in patients with chronic airflow limitation using
continuous positive airway pressure.
Am Rev Respir Dis.
1988;
138
1510-1514
MissingFormLabel
- 37
Petrof B J, Calderini E, Gottfried S B.
Effect of CPAP on respiratory effort and dyspnea during exercise in severe COPD.
J Appl Physiol.
1990;
69
179-188
MissingFormLabel
- 38
O'Donnell D E, Sanii R, Giesbrecht G. et al .
Effect of continuous positive airway pressure on respiratory sensation in patients
with chronic obstructive pulmonary disease during submaximal exercise.
Am Rev Respir Dis.
1988;
138
1185-1191
MissingFormLabel
- 39
Bianchi L, Foglio K, Pagani M. et al .
Effects of proportional assist ventilation on exercise tolerance in COPD patients
with chronic hypercapnia.
Eur Respir J.
1998;
11
422-427
MissingFormLabel
- 40
Dolmage T E, Goldstein R S.
Proportional assist ventilation and exercise tolerance in subjects with COPD.
Chest.
1997;
111
948-994
MissingFormLabel
- 41
Keilty S E, Ponte J, Fleming T A. et al .
Effect of inspiratory pressure support on exercise tolerance and breathlessness in
patients with severe stable chronic obstructive pulmonary disease.
Thorax.
1994;
49
990-994
MissingFormLabel
- 42
Maltais F, Reissmann H, Gottfried S B.
Pressure support reduces inspiratory effort and dyspnea during exercise in chronic
airflow obstruction.
Am J Respir Crit Care Med.
1995;
151
1027-1033
MissingFormLabel
- 43
Polkey M I, Kyroussis D, Mills G H. et al .
Inspiratory pressure support reduces slowing of inspiratory muscle relaxation rate
during exhaustive treadmill walking in severe COPD.
Am J Respir Crit Care Med.
1996;
154
1146-1150
MissingFormLabel
- 44
Kyroussis D, Polkey M I, Hamnegard C H. et al .
Respiratory muscle activity in patients with COPD walking to exhaustion with and without
pressure support.
Eur Respir J.
2000;
15
649-655
MissingFormLabel
- 45
Polkey M I, Hawkins P, Kyroussis D. et al .
Inspiratory pressure support prolongs exercise induced lactataemia in severe COPD.
Thorax.
2000;
55
547-549
MissingFormLabel
- 46
Costes F, Agresti A, Court-Fortune I. et al .
Noninvasive ventilation during exercise training improves exercise tolerance in patients
with chronic obstructive pulmonary disease.
J Cardiopulm Rehabil.
2003;
23
307-313
MissingFormLabel
- 47
Hul A van’t, Gosselink R, Hollander P. et al .
Training with inspiratory pressure support in patients with severe COPD.
Eur Respir J.
2006;
27
65-72
MissingFormLabel
- 48
Hul A van’t, Gosselink R, Hollander P. et al .
Acute effects of inspiratory pressure support during exercise in patients with COPD.
Eur Respir J.
2004;
23
34-40
MissingFormLabel
- 49
Toledo A, Borghi-Silva A, Sampaio L MM. et al .
The impact of noninvasive ventilation during the physical training in patients with
moderate-to-severe chronic obstructive pulmonary disease (COPD).
Clinics.
2007;
62
113-120
MissingFormLabel
- 50
Highcock M P, Shneerson J M, Smith I E.
Increased ventilation with NiIPPV does not necessarily improve exercise capacity in
COPD.
Eur Respir J.
2003;
22
100-105
MissingFormLabel
- 51
Hernandez P, Maltais F, Gursahaney A. et al .
Proportional assist ventilation may improve exercise performance in severe chronic
obstructive pulmonary disease.
J Cardiopulm Rehabil.
2001;
21
135-142
MissingFormLabel
- 52
Hawkins P, Johnson L C, Nikoletou D. et al .
Proportional assist ventilation as an aid to exercise training in severe chronic obstructive
pulmonary disease.
Thorax.
2002;
57
853-859
MissingFormLabel
- 53
Bianchi L, Foglio K, Porta R. et al .
Lack of additional effect of adjunct of assisted ventilation to pulmonary rehabilitation
in mild COPD patients.
Respir Med.
2002;
96
359-367
MissingFormLabel
- 54
Tsuboi T, Ohi M, Chin K. et al .
Ventilatory support during exercise in patients with pulmonary tuberculosis sequelae.
Chest.
1997;
112
1000-1007
MissingFormLabel
- 55
Dreher M, Storre J H, Windisch W.
Noninvasive ventilation during walking in patients with severe COPD: a randomised
cross-over trial.
Eur Respir J.
2007;
29
930-936
MissingFormLabel
- 56
Garrod R, Mikelsons C, Paul E A. et al .
Randomized controlled trial of domiciliary noninvasive positive pressure ventilation
and physical training in severe chronic obstructive pulmonary disease.
Am J Respir Crit Care Med.
2000;
162
1335-1341
MissingFormLabel
- 57
Schönhofer B, Dellweg D, Suchi S. et al .
Exercise Endurance before and after Long-Term Noninvasive Ventilation in Patients
with Chronic Respiratory Failure.
Respiration.
2007, Jul 12; [Epub ahead of print];
MissingFormLabel
PD. Dr. med. Wolfram Windisch
Abteilung Pneumologie Universitätsklinik Freiburg
Killianstrasse 5
79106 Freiburg
Email: wolfram.windisch@uniklinik-freiburg.de