Zusammenfassung
Ziel der Studie: Ziel der vorliegenden Probandenstudie war die Bestimmung des Wärmetransfers durch
Wassermatten bei Anwendung unter dem Rücken und über den Beinen. Methodik: Mit Zustimmung der örtlichen Ethikkommission wurden bei acht Probanden sechs Wärmeflusssensoren
auf dem Rücken und weitere acht Sensoren an beiden Beinen platziert. Die Probanden
mussten sich dann auf eine Wassermatte (ComfortPad Plus®, Cincinnati Sub-Zero Products
Inc., Cincinnati, OH, USA) mit Gelauflage (Granulab International, Armersfoort, Niederlande)
legen. Über beide Beine wurde eine weitere Wassermatte (Plastipad™, Cincinnati Sub-Zero
Products Inc.) gelegt. Beide Matten wurden mit einem Hico-Variotherm 530 (Hirtz &
Co. Hospitalwerk, Köln) auf 41 °C gewärmt. Nach Bestimmung der Kontaktfläche wurde
durch Multiplikation des gemessenen Wärmeflusses pro Fläche der Wärmetransfer errechnet.
Ergebnisse: Der Wärmefluss pro Fläche zum Rücken betrug 45,6 ± 4,5 W m- 2, die Kontaktfläche war 0,39 ± 0,03 m2. Daraus errechnete sich ein Wärmetransfer von 18,0 ± 2,4 W. Der Wärmefluss pro Fläche
zu den Beinen betrug 24,7 ± 4,3 W m- 2, die Kontaktflächenmessung ergab 0,12 ± 0,01 m2. Daraus errechnete sich ein Wärmetransfer von 2,9 ± 0,6 W. Schlussfolgerung: Durch die Wassermatte unter dem Rücken konnte ein deutlich höherer Wärmetransfer
erzielt werden als mit der Wassermatte über den Beinen. Dennoch ist die Wärmung der
Beine zur Hypothermieprophylaxe wichtiger, da Modellrechnungen zeigen, dass dadurch
ein stärkerer Einfluss auf die Wärmebilanz ausgeübt wird.
Abstract
Aim of the study: To determine the heat transfer by circulating-water mattresses placed under the back
and over both legs of human volunteers. Methods: With approval by the local ethics committee and informed consent eight minimally
clothed volunteers were included in the study. Six calibrated heat flux transducers
were placed on the back and additionally eight sensors were placed on both legs of
each volunteer. The volunteers reclined on a circulating-water mattress (ComfortPad
Plus®, Cincinnati Sub-Zero Products Inc., Cincinnati, OH, USA) coated with gel (Granulab
International, Armersfoort, Niederlande). Another circulating-water mattress (Plastipad™,
Cincinnati Sub-Zero Products Inc.) was placed over both legs. Both devices were heated
to 41 °C by a hypo-hyperthermia system (Hico-Variotherm 530, Hirtz & Co. Hospitalwerk,
Cologne, Germany). Heat flux data were sampled during steady-state conditions. After
determination of the contact area between the mattresses and the skin, heat transfer
was calculated by multiplication of the heat flux per area by the contact area. Results: Heat flux per area to the back was 45.6 ± 4.5 W m- 2, the contact area was 0.39 ± 0.03 m2. This resulted in a heat transfer of 18.0 ± 2.4 W. Heat flux per area to the legs
was 24.7 ± 4.3 W m- 2, the contact area was 0.12 ± 0.01 m2. This resulted in a heat transfer of 2.9 ± 0.6 W. Conclusion: The heat transfer of the circulating-water mattress to the back was much higher than
the heat transfer to the legs. Nevertheless, model calculations show that conductive
warming of the legs is more important for the prevention of perioperative hypothermia
than conductive warming of the back, because it has a higher impact on the heat balance.
Schlüsselwörter
Perioperative Hypothermie - Wassermatte - Wärmeaustausch - Wärmeflussmessung - Wärmebilanz
Key words
Perioperative hypothermia - circulating-water mattress - heat exchange - heat flux
measurements - heat balance
Literatur
- 1
Sessler D I.
Perioperative heat balance.
Anesthesiology.
2000;
92
578-596
- 2
Valeri C R, Khabbatz K, Khuri S F, Marquardt C, Ragno G, Feingold H, Gray A D, Axford T.
Effect of skin temperature on platelet function in patients undergoing extracorporeal
bypass.
J Thorac Cardiovasc Surg.
1992;
104
108-116
- 3
Rohrer M J, Natale A M.
Effect of hypothermia on the coagulation cascade.
Crit Care Med.
1992;
20
1402-1405
- 4
Kurz A, Sessler D I, Lenhardt R.
Perioperative normothermia to reduce the incidence of surgical-wound infection and
shorten hospitalization.
N Engl J Med.
1996;
334
1209-1215
- 5
Schmied H, Kurz A, Sessler D I, Kozek S, Reiter A.
Mild hypothermia increases blood loss and transfusion requirements during total hip
arthroplasty.
Lancet.
1996;
347
289-292
- 6
Winkler M, Akça O, Birkenberg B, Hetz H, Scheck T, Arkiliç C F, Kabon B, Marker E,
Grübl A, Czepan R, Greher M, Goll V, Gottsauner-Wolf F, Kurz A, Sessler D I.
Aggressive warming reduces blood loss during hip arthroplasty.
Anesth Analg.
2000;
91
978-984
- 7
Frank S M, Beattie C, Christopherson R, Norris E J, Perler B A, Williams G M, Gottlieb S O.
Unintentional hypothermia is associated with postoperative myocardial ischemia.
Anesthesiology.
1993;
78
468-476
- 8
Frank S M, Fleischer L A, Breslow M J, Higgins M S, Olsen K F, Kelly S, Beattie C.
Perioperative maintenance of normothermia reduces the incidence of morbid cardiac
events. A randomized clinical trial.
JAMA.
1997;
277
1127-1134
- 9
Hynson J M, Sessler D I.
Intraoperative warming therapies: a comparison of three devices.
J Clin Anesth.
1992;
4
194-199
- 10
Kurz A, Kurz M, Poeschl G, Faryniak B, Redl G, Hackl W.
Forced-air warming maintains intraoperative normothermia better than circulating-water
mattresses.
Anesth Analg.
1993;
77
89-95
- 11
Müller C M, Langenecker S, Andel H, Nantschev I, Hölzenbein T J, Zimpfer M.
Forced-air warming maintains normothermia during orthotopic liver transplantation.
Anaesthesia.
1995;
50
229-232
- 12
Sessler D I, Moayeri A.
Skin-surface warming: heat flux and central temperature.
Anesthesiology.
1990;
73
218-224
- 13
Ng S, Oo C, Loh K, Lim P, Chan Y, Ong B.
A comparative study of three warming interventions to determine the most effective
in maintaining perioperative normothermia.
Anesth Analg.
2003;
96
171-176
- 14
Matsuzaki Y, Matsukawa T, Ohki K, Yamamoto Y, Nakamura M, Oshibuchi T.
Warming by resistive heating maintains perioperative normothermia as well as forced
air warming.
Br J Anaesth.
2003;
90
689-691
- 15
English M JM, Farmer C, Scott W AC.
Heat loss in exposed volunteers.
J Trauma.
1990;
30
422-425
- 16
Crino M H, Nagel E L.
Thermal burns caused by warming blankets in the operating room.
Anesthesiology.
1968;
29
149-150
- 17
Scott S M, Otten N C.
Thermal blanket injury in the operating room.
Arch Surg.
1967;
94
181
- 18
Gali B, Findlay J Y, Plevak D J.
Skin injury with the use of a water warming device.
Anesthesiology.
2003;
98
1509-1510
- 19
Bennett J, Ramachandra V, Webster J, Carli F.
Prevention of hypothermia during hip surgery: effect of passive compared with active
skin surface warming.
Br J Anaesth.
1994;
73
180-183
- 20
Kaudasch G, Schempp P, Skierski P, Turner E.
Einfluß konvektiver Wärmezufuhr während Abdominalchirurgie auf die früh-postoperative
Wärmebilanz.
Anaesthesist.
1996;
45
1075-1081
- 21
Muth C M, Mainzer B, Peters J.
The use of countercurrent heat exchangers diminishes accidental hypothermia during
abdominal aortic aneurysm surgery.
Acta Anaesthesiol Scand.
1997;
40
1197-1202
- 22
Matsukawa T, Sessler D I, Sessler A M, Schroeder M, Ozaki M, Kurz A, Cheng C.
Heat flow and distribution during induction of general anesthesia.
Anesthesiology.
1995;
82
662-673
- 23
Kurz A, Sessler D I, Christensen R, Dechert M.
Heat balance and distribution during the core-temperature plateau in anesthetized
humans.
Anesthesiology.
1995;
83
491-499
- 24
Bräuer A, English M JM, Steinmetz N, Lorenz N, Perl T, Braun U, Weyland W.
Comparison of forced-air warming systems with upper body blankets using a copper manikin
of the human body.
Acta Anaesthesiol Scand.
2002;
46
965-972
- 25
Bräuer A, English M JM, Lorenz N, Steinmetz N, Perl T, Braun U, Weyland W.
Comparison of forced-air warming systems with lower body blankets using a copper manikin
of the human body.
Acta Anaesthesiol Scand.
2003;
47
58-64
- 26
Perl T, Bräuer A, Timmermann A, Mielck F, Weyland W, Braun U.
Are there differences in perfomence of forced-air warmers? A randomized trial of heat
transfer in volunteers using upper body blankets.
Acta Anaesthesiol Scand.
2003;
47
1159-1164
- 27
English M, Scott A, Weyland W.
Grundlagen von Wärmeaustausch und Isolation im OP.
Anaesthesiol Intensivmed Notfallmed Schmerzther.
1998;
33
386-389
- 28 Weyland W, English M, Scott A.
Perioperative Hypothermia. Prevention and Treatment. In: Gullo A (Hrsg.). Trieste, Italy November 19 - 21, 1997 Mailand; Springer 1998:
313-318
- 29
Sessler D I, McGuire J, Moayeri A, Hynson J.
Isoflurane-induced vasodilatation minimally increases cutaneous heat loss.
Anesthesiology.
1991;
74
226-232
- 30
Bräuer A, English M JM, Sander H, Timmermann A, Braun U, Weyland W.
Construction and evaluation of a manikin for perioperative heat exchange.
Acta Anaesthesiol Scand.
2002;
46
43-50
Dr. med. Anselm Bräuer DEAA
Zentrum Anästhesiologie, Rettungs- und Intensivmedizin ·
Georg-August-Universität · Robert-Koch-Straße 40 · 37075 Göttingen
eMail: abraeue@gwdg.de