Zusammenfassung
Fragestellung
Zervixkarzinome sind meistens Plattenepithelkarzinome, während Adenokarzinome seltener
auftreten. Spezifische genomische Veränderungen sind verantwortlich für die Karzinogenese
und Tumorprogression von Zervixkarzinomen. Der Zusammenhang zwischen Genotyp und Phänotyp
beim Zervixkarzinom ist bis heute unklar.
Material und Methodik
Die Methode der Comparative Genomic Hybridization wurde verwendet, um in 62 Plattenepithel-
und 22 Adenokarzinomen des klinischen Stadiums FIGO IB nach DNS-Sequenzveränderungen
zu suchen. Zusätzlich wurde der HercepTestTM angewandt, um immunhistochemisch die Expression von HER-2/neu beim Adenokarzinom
zu beurteilen.
Ergebnisse
In beiden Tumorarten waren DNS-Sequenzverluste am häufigsten auf 4 q, Xq und 18 q
zu finden. DNS-Sequenzverluste waren die häufigsten Alterationen beim Plattenepithelkarzinom,
während DNS-Sequenzvermehrungen auf 17 q die häufigste Alteration beim Adenokarzinom
darstellten. HER-2/neu Überexpression wurde nur in 2 Adenokarzinomen festgestellt.
Die Gesamtzahl der DNS-Aberrationen pro Tumor und die Anzahl von DNS-Sequenzverlusten
pro Tumor waren signifikant assoziiert mit dem tumorspezifischen Überleben beim Plattenepithelkarzinom.
Sequenzverluste auf den Chromosomen 11 p und 18 q waren signifikant assoziiert mit
einer schlechten Prognose beim Plattenepithelkarzinom ohne Lymphknotenmetastasen.
Analog zum Plattenepithelkarzinom sind DNS-Sequenzverluste des Chromosoms 18 q auch
beim Adenokarzinom eindeutig assoziiert mit einer schlechten Prognose.
Schlussfolgerung
DNS-Sequenzvermehrungen auf 17 q sind nicht mit einer HER-2 Überexpression beim Adenokarzinom
verbunden. Die Inaktivierung von Tumorsuppressor-Genen auf 18 q ist offenbar verantwortlich
für die Tumorprogression sowohl des Adeno- als auch des Plattenepithelkarzinoms der
Cervix uteri.
Abstract
Purpose
Cervical carcinomas are almost always squamous cell carcinomas, whereas adenocarcinomas
are rare. There is evidence that specific genetic events are involved in initiation
and progression of invasive cervical cancer. The genotype-phenotype correlations in
cervical cancer are unclear.
Material and Methods
Comparative genomic hybridization was applied to screen for DNA copy number changes
in 62 squamous cell carcinomas and 22 adenocarcinomas of clinical stage IB. Immunohistochemistry
was performed in adenocarcinoma samples to determine the HER-2 expression (HercepTestTM).
Results
In both cancer types, DNA sequence losses were most prevalent at chromosomes 4 q,
Xq and 18 q. Losses were the most frequent alterations in squamous cell carcinoma,
whereas DNA sequence gains of chromosome 17 q (54 %) represented the most frequent
copy number alterations in cervical adenocarcinomas. HER-2 overexpression was detected
in only two adenocarcinomas. The total number of DNA aberrations per tumor (P < 0.02),
and the number of DNA sequence losses per tumor (P < 0.04) were associated with disease-specific
survival in squamous cell carcinoma. 9 p deletions were significantly more frequent
in squamous cell carcinomas with lymph node metastasis than in node negative tumors
(P < 0.03). Losses of chromosome 11 p (P < 0.0001) and 18 q (P < 0.01) were associated
with poor prognosis in squamous cell carcinomas without lymph node metastasis. In
analogy to squamous cell carcinoma, DNA sequence losses of chromosome 18 q were significantly
associated with poor prognosis in cervical adenocarcinoma (P < 0.01).
Conclusion
DNA sequence copy number gains on 17 q are not associated with HER-2 expression in
adenocarcinomas. The inactivation of tumor suppressor genes on chromosome 18 q might
be responsible for the progression of both cervical adenocarcinoma and squamous cell
carcinoma.
Schlüsselwörter
Zervixkarzinom - Genomische Aberrationen - Chromosom 11 p - Chromosom 18 q - CGH
Key words
Cervical cancer - Genomic aberrations - Chromosome 11 p - Chromosome 18 q - CGH
Literatur
- 1
Cervical Cancer.
NIH Consensus Statement.
Bethesda, Maryland.
1996;
14
1-38
- 2 DiSaia P J, Creasman W. Clinical Gynecologic Oncology. St. Louis, Missouri; Mosby
Inc. 2002
- 3
zur Hausen H.
Papillomavirus and p53.
Nature.
1998;
393
217
- 4
Larson A A, Kern S, Curtiss S, Gordon R, Cavenee W K, Hampton G M.
High resolution analysis of chromosome 3 p alterations in cervical carcinoma.
Cancer Res.
1997;
57
4082-4090
- 5
Wistuba I I, Montellano F D, Milchgrub S, Virmani A K, Behrens C, Chen H, Ahmadian M,
Nowak J A, Muller C, Minna J D, Gazdar A F.
Deletions of chromosome 3 p are frequent and early events in the pathogenesis of uterine
cervical carcinoma.
Cancer Res.
1997;
57
3154-3158
- 6
Heselmeyer K, Schrock E, du Manoir S, Blegen H, Shah K, Steinbeck R, Auer G, Ried T.
Gain of chromosome 3 q defines the transition from severe dysplasia to invasive carcinoma
of the uterine cervix.
Proc Natl Acad Sci USA.
1996;
93
479-484
- 7
Hidalgo A, Schewe C, Petersen S, Salcedo M, Gariglio P, Schluns K, Dietel M, Petersen I.
Human papilloma virus status and chromosomal imbalances in primary cervical carcinomas
and tumour cell lines.
Eur J Cancer.
2000;
36
542-548
- 8
Kirchhoff M, Rose H, Petersen B L, Maahr J, Gerdes T, Lundsteen C, Bryndorf T, Kryger-Baggesen N,
Christensen L, Engelholm S A, Philip J.
Comparative genomic hybridization reveals a recurrent pattern of chromosomal aberrations
in severe dysplasia/carcinoma in situ of the cervix and in advanced-stage cervical
carcinoma.
Genes Chromosomes & Cancer.
1999;
24
144-150
- 9
Kirchhoff M, Rose H, Petersen B L, Maahr J, Gerdes T, Philip J, Lundsteen C.
Comparative genomic hybridization reveals non-random chromosomal aberrations in early
preinvasive cervical lesions.
Cancer Genetics and Cytogenetics.
2001;
129
47-51
- 10
Heselmeyer K, Macville M, Schrock E, Blegen H, Hellstrom A C, Shah K, Auer G, Ried T.
Advanced-stage cervical carcinomas are defined by a recurrent pattern of chromosomal
aberrations revealing high genetic instability and a consistent gain of chromosome
arm 3 q.
Genes Chromosomes Cancer.
1997;
19
233-240
- 11
Umayahara K, Numa F, Suehiro Y, Sakata A, Nawata S, Ogata H, Suminami Y, Sakamoto M,
Sasaki K, Kato H.
Comparative genomic hybridization detects genetic alterations during early stages
of cervical cancer progression.
Genes Chromosomes & Cancer.
2002;
33
98-102
- 12
Yang Y C, Shyong W Y, Chang M S, Chen Y J, Lin C H, Huang Z D, Wang T Y, Hsu M T,
Chen M L.
Frequent gain of copy number on the long arm of chromosome 3 in human cervical adenocarcinoma.
Cancer Gen Cytogen.
2001;
131
48-53
- 13 Levine A J.
Tumor suppressor genes. Mendelsohn J, Howley PM, Israel MA, Liotta LA The Molecular Basis of Cancer. Philadelphia;
W. B. Saunders Company 1995
- 14 Rosen N.
Oncogenes. Mendelsohn J, Howley PM, Israel MA, Liotta LA The Molecular Basis of Cancer. Philadelphia;
W. B. Saunders Company 1995
- 15
Dellas A, Torhorst J, Jiang F, Proffitt J, Schultheiss E, Holzgreve W, Sauter G, Mihatsch M J,
Moch H.
Prognostic value of genomic alterations in invasive cervical squamous cell carcinoma
of clinical stage IB detected by comparative genomic hybridization.
Cancer Res.
1999;
59
3475-3479
- 16
Dellas A, Schultheiss E, Almendral A C, Gudat F, Oberholzer M, Feichter G, Moch H,
Torhorst J.
Altered expression of mdm-2 and its association with p53 protein status, tumor-cell-proliferation
rate and prognosis in cervical neoplasia.
Int J Cancer.
1997;
74
421-425
- 17
Dellas A, Moch H, Schultheiss E, Feichter G, Almendral A C, Gudat F, Torhorst J.
Angiogenesis in cervical neoplasia: microvessel quantitation in precancerous lesions
and invasive carcinomas with clinicopathological correlations.
Gynecol Oncol.
1997;
67
27-33
- 18
Kallioniemi A, Kallioniemi O P, Sudar D, Rutovitz D, Gray J W, Waldman F, Pinkel D.
Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors.
Science.
1992;
258
818-821
- 19
Moch H, Presti J C.
Sauter G, Buchholz N, Jordan P, Mihatsch MJ, Waldman FM. Genetic aberrations detected
by comparative genomic hybridization are associated with clinical outcome in renal
cell carcinoma.
Cancer Res.
1996;
56
27-30
- 20
Larson A A, Liao S Y, Stanbridge E J, Cavenee W K, Hampton G M.
Genetic alterations accumulate during cervical tumorigenesis and indicate a common
origin for multifocal lesions.
Cancer Res.
1997;
57
4171-4176
- 21
Cavenee W K, White R L.
The genetic basis of cancer.
Sci Am.
1995;
272
72-79
- 22
Isola J J, Kallioniemi O P, Chu L W, Fuqua S A, Hilsenbeck S G, Osborne C K, Waldman F M.
Genetic aberrations detected by comparative genomic hybridization predict outcome
in node-negative breast cancer.
Am J Pathol.
1995;
147
905-911
- 23
Fearon E R, Cho K R, Nigro J M, Kern S E, Simons J W, Ruppert J M, Hamilton S R, Preisinger A C,
Thomas G, Kinzler K W. et al .
Identification of a chromosome 18 q gene that is altered in colorectal cancers.
Science.
1990;
247
49-56
- 24
Hahn S A, Schutte M, Hoque A T, Moskaluk C A, da Costa L T, Rozenblum E, Weinstein C L,
Fischer A, Yeo C J, Hruban R H, Kern S E.
DPC4, a candidate tumor suppressor gene at human chromosome 18 q21. 1.
Science.
1996;
271
350-353
- 25
Eppert K, Scherer S W, Ozcelik H, Pirone R, Hoodless P, Kim H, Tsui L C, Bapat B,
Gallinger S, Andrulis I L, Thomsen G H, Wrana J L, Attisano L.
MADR2 maps to 18 q21 and encodes a TGFbeta-regulated MAD-related protein that is functionally
mutated in colorectal carcinoma.
Cell.
1996;
86
543-552
- 26
Klingelhutz A J, Smith P P, Garrett L R, McDougall J K.
Alteration of the DCC tumor-suppressor gene in tumorigenic HPV-18 immortalized human
keratinocytes transformed by nitrosomethylurea.
Oncogene.
1993;
8
95-99
- 27
Klingelhutz A J, Hedrick L, Cho K R, McDougall J K.
The DCC gene suppresses the malignant phenotype of transformed human epithelial cells.
Oncogene.
1995;
10
1581-1586
- 28
Seizinger B R, Klinger H P, Junien C, Nakamura Y, LeBeau M M, Cavenee W, Emanuel B,
Ponder B, Naylor S, Mitelman F, Louis D, Menon A, Newsham I, Decker J, Kaelbling M,
Henry I, Deimling A V.
Report of the committee on chromosome and gene loss in human neoplasia.
Cytogenet Cell Genet.
1991;
58
1080-1096
- 29
Smits P H, Smits H L, Jebbink M F, ter Schegget J.
The short arm of chromosome 11 likely is involved in the regulation of the human papillomavirus
type 16 early enhancer-promoter and in the suppression of the transforming activity
of the viral DNA.
Virology.
1990;
176
158-165
- 30
Jagasia A A, Block J A, Qureshi A, Diaz M O, Nobori T, Gitelis S, Iyer A P.
Chromosome 9 related aberrations and deletions of the CDKN2 and MTS2 putative tumor
suppressor genes in human chondrosarcomas.
Cancer Lett.
1996;
105
91-103
- 31
Semba K, Kamata N, Toyoshima K, Yamamoto T.
A V-Erbb-related protooncogene, C-Erbb-2, is distinct from the C-Erbb-1/epidermal
growth factor-receptor gene and is amplified in a human salivary-gland adenocarcinoma.
Proceedings of the National Academy of Sciences of the United States of America.
1985;
82
6497-6501
- 32
King C R, Kraus M H, Aaronson S A.
Amplification of a Novel V-Erbb-Related Gene in a Human Mammary-Carcinoma.
Science.
1985;
229
974-976
- 33
Coussens L, Yangfeng T L, Liao Y C, Chen E, Gray A, Mcgrath J, Seeburg P H, Libermann T A,
Schlessinger J, Francke U, Levinson A, Ullrich A.
Tyrosine kinase receptor with extensive homology to Egf receptor shares chromosomal
location with Neu oncogene.
Science.
1985;
230
1132-1139
- 34
Konecny G, Pegram M, Untch M, Thomssen C, Jänicke F, Hepp H, Slamon D J.
HER-2/neu as a predictive marker in breast cancer.
Geburtsh Frauenheilk.
2000;
50
609-619
- 35
Brien T P, Odze R D, Sheehan C E, McKenna B J, Ross J S.
HER-2/neu gene amplification by FISH predicts poor survival in Barrett's esophagus-associated
adenocarcinoma.
Hum Pathol.
2000;
31
35-39
- 36
Ahr A, Holtrich U, Karn T, Solbach C, Gatje R, Scharl A, Strebhardt K, Kaufmann M.
Detection of differentially expressed genes in breast cancer with cDNA-array hybridization.
Geburtsh Frauenheilk.
2000;
60
412-417
- 37
Ahr A, Holtrich U, Solbach C, Scharl A, Strebhardt K, Karn T, Kaufmann M.
Gene expression profiling for molecular identification of high-risk breast cancer
patients.
Geburtsh Frauenheilk.
2001;
61
954-963
PD Dr. med. Athanassios Dellas
Oberer Batterieweg 39
4059 Basel
Schweiz
eMail: a.dellas@unibas.ch