Zusammenfassung
Fragestellung: Transferrin sichert als Transportprotein die Eisenversorgung des Feten in der Schwangerschaft.
Humanes Amniontransferrin (hAT) kommt in hohen Konzentrationen im Fruchtwasser vor
[6]. Seine Glykosylierung unterscheidet sich von der des Serumtransferrins. Die Funktion
des Amniontransferrins ist noch weitgehend ungeklärt. Besonders glykosyliertes Transferrin
wird auch vom Trophoblasten produziert. Die Kohlenhydratstrukturen des hAT sind mit
dem vom Trophoblasten produzierten Transferrin identisch. Wir untersuchten den Einfluß
von hAT und im Vergleich dazu den Einfluß von holo- und apo-Serumtransferrin auf die
Progesteron-, Kortisol- und hCG-Freisetzung von Trophoblastzellen in vitro. Material und Methoden: Die Trophoblastzellisolierung aus Terminplazenten erfolgte nach grober Präparation
von Kotyledonen und anschließender mehrschrittiger DNAse I und Trypsinverdauung sowie
Percoll-Gradienten-Zentrifugation. Die gewonnenen Trophoblastzellen wurden in Kultur
gebracht und es erfolgte die einmalige Zugabe von Amniontransferrin, holo- oder apo-Serumtransferrin.
Die Produktion von Progesteron, Kortisol und hCG wurde in jeweils 8 h-Schritten gemessen.
Parallel dazu wurden die Hormonwerte einer nicht stimulierten Kultur aus der gleichen
Plazenta bestimmt. Ergebnisse: Mit Amniontransferrin (50 µg/ml; 100 µg/ml; 250 µg/ml) versetzte Trophoblastzellen
wiesen in vitro eine signifikant erhöhte Progesteronfreisetzung im Vergleich zu unbehandelten Zellen
auf. Holo- und apo-Serumtransferrin zeigten keine Effekte auf die Progesteronfreisetzung
der Trophoblastzellen in vitro. Weder hAT noch holo- oder apo-Serumtransferrin hatten einen Effekt auf die Kortisol-
und hCG-Freisetzung in vitro. Diskussion: Progesteron ist Marker für den Differenzierungsprozeß der Trophoblastzellen in Synzytiotrophoblastzellen.
Die Ergebnisse zeigen, daß hAT durch Stimulierung der Progesteronproduktion in vitro in plazentare Regulationsmechanismen der Progesteronsekretion involviert ist.
Human amniotic fluid transferrin stimulates progesterone production in human trophoblast
cells in vitro
Summary
Objective: During pregnancy transferrin plays a key role as an iron transport protein to serve
the increased fetal demands of iron. Transferrin is also present in relatively high
concentrations in amniotic fluid [6], showing a different glycosylation compared with serum transferrin. The biological
function of human amniotic fluid transferrin (hAFT) is still unknown. In addition
trophoblast cells also synthesise transferrin. Transferrin synthesised by the trophoblast
shows a special glycosylation. We found identical carbohydrate structures of hAFT
and trophoblast transferrin. We investigated the influence of hAFT on the progesterone-,
cortisol- and hCG-release of trophoblasts in culture compared with the influence of
human holo- and apo-serum transferrin on the release of these hormones. Material and methods: Cytotrophoblast cells were prepared from human term placentae by standard trypsin-DNAse
dispersion of villous tissue followed by a percoll gradient centrifugation step. When
placed in culture, the trophoblasts were incubated with varying concentrations (50-300
µg/ml) of human amniotic fluid- and serumtransferrin. Unstimulated cells of each placenta
used as controls. Culture supernatants were assayed for progesterone, hCG and cortisol
by enzyme-immunometric methods. Results: Our results show, that the release of progesterone increased in hAFT-treated cell
cultures compared to untreated cell cultures. Holo- and apo-serumtransferrin did not
show any effect on the progesterone release by trophoblast cells in vitro. Neither hAFT nor holo- and apo-serum transferrin had any effect on the cortisol-
and hCG-release in vitro. Conclusions: Progesterone is a marker for differentiation of trophoblasts in syncytiotrophoblasts.
Only hAFT stimulates the progesterone production. We suggest, that hAFT can modulate
the endocrine function of trophoblast cells in culture by regulating progesterone
production.
MeSH
D4.808.745.745.654.829 progesteroneG8.520.769 pregnancy
Schlüsselwörter
Transferrin - Progesteronproduktion - Trophoblastzellen
Key words
Transferrin - progesterone production - trophoblast cell culture
Literatur
- 1
Aisen P, Brown E B.
Structure and function of transferrin.
Prog Hematol, N.Y..
1975;
9
25-56
- 2
Beer A E, Sio J O.
Placenta as an immunological barrier.
Biol Reprod.
1982;
26
15-27
- 3
Bierings M B, Baert M R, van Eijk H G, van Dijk J P.
Transferrin receptor expression and the regulation of placental iron uptake.
Mol Cell Biochem.
1991;
100
31-38
- 4
Bulmer J N, Morisson L, Johnson P M.
Expression of the proliferation markers Ki67 and transferrin receptor by human trophoblast
population.
J Reprod Immunol.
1988;
14
291-302
- 5
Contractor S F, Eaton B M.
Role of transferrin in iron transport between maternal and fetal circulations of a
perfused lobule of human placenta.
Cell Biochem Funct.
1986;
4
69-74
- 6
Crosignani P G, Tencioni T, Brambati B.
Concentration of chorionic gonadotropin and chorionic somatomammotropin in maternal
serum, amniotic fluid and cord blood serum at term.
J Obstet Gynaecol Br Commonw.
1969;
79
122-126
- 7
Douglas G C, King B F.
Uptake and processing of 125I-labelled transferrin and 59Fe-labelled transferrin by
isolated human trophoblast cells.
Placenta.
1990;
11
41-57
- 8
Faulk W P, Galbraith G MP.
Trophoblast transferrin and transferrin receptors in the host-parasite relationship
of human pregnancy.
Proc Royal Soc London/B.
1979;
204
83-97
- 9 Faulk W P, Stevens P J, Hsi B L. Transferrin and transferrin receptors in carcinoma
of the breast. Lancet 1980; 390-392
- 10
Feinberg B B, Anderson D J, Steller M A, Fulop V, Berkowitz R S, Hill J A.
Cytokine regulation of trophoblast steroidogenesis.
J Clin Endocrinol Metab.
1994;
78
586-591
- 11
Galbraith G MP, Galbraith R M, Faulk W P.
Immunological studies of transferrin and transferrin receptors of human placental
trophoblast.
Placenta.
1980;
1
33-46
- 12
Gitlin D, Kumate J, Urrusti J, Morales C.
The selectivity of the human placenta in the transfer of plasma proteins from mother
to fetus.
J Clin Invest.
1964;
43
1938-1951
- 13
Hansen P J.
Regulation of uterine immune function by progesterone-lessons from the sheep.
J Reprod Immunol.
1998;
40
63-79
- 14
Harris E D.
New insights into placental iron transport.
Nutr Rev.
1992;
50
329-337
- 15
Hedge U C.
Immunmodulation of the mother during pregnancy.
Med Hypothesis.
1991;
35
159-164
- 16
Jeschke U, Briese V, Richter D, Kunkel S.
Attempts to stimulate trophoblast cells in vitro with PP14.
Z Geburtshilfe Neonatol.
1996;
200
199-201
- 17
Jeschke U, Briese V, Richter D, Kunkel S, Walzel H, Friese K.
New results in hCG regulation in the placenta.
Geburtshilfe Frauenheilkd.
1997;
57
681-684
- 18
Kliman H J, Nestler J E, Sermasi E, Sanger H J, Strauss J F.
Purification, characterisation and in vitro differentiation of cytotrophoblasts from human term placentae.
Endocrinology.
1986;
118
1567-1582
- 19
Martinovic S, Latin V, Suchanek E, Stavljenic-Rukavina A, Sampath K I, Vukicevic S.
Osteogenic protein-1 is produced by human fetal trophoblasts in vivo and regulates
the synthesis of chorionic gonadotropin and progesterone by trophoblasts in vitro
.
Eur J Clin Chem Clin Biochem.
1996;
24
103-109
- 20
Seki H, Zosmer A, Elder M G, Sullivan M H.
The regulation of progesterone and hCG production from placental cells by interleukin-1
beta.
Biochim Biophys Acta.
1997;
1336
342-348
- 21
Shanker Y G, Rao A J.
Regulation of progesterone biosynthesis in the human placenta by estradiol 17 beta
and progesterone.
Biochem Mol Biol Int.
1997;
43
591-599
- 22 Than G N, Bohn H, Szabo D G. Advances in pregnancy-related protein research, functional
and clinical applications. CRC Press 1993
- 23
van Rooijen J J, Jeschke U, Kamerling J P, Vliegenthart J F.
Expression of N-linked sialyl Le(x) determinants and O-glycans in the carbohydrate
moiety of human amniotic fluid transferrin during pregnancy.
Glycobiology.
1998;
8
1053-1064
- 24
Verrijt C EH, Kroos M J, Verhoeven A JM, van Eijk H G, van Dijk J P.
Transferrin in cultured human term cytotrophoblast cells: Synthesis and heterogeneity.
Mol Cell Biochem.
1997;
173
177-181
- 25
Zelewski L.
Regulation of progesterone biosynthesis in human placenta.
Acta Biochem Polon.
1992;
39
233-244
Dr. rer. nat. U. Jeschke
Frauenklinik Universität Rostock
Doberaner Straße 142
D-18057 Rostock