Subscribe to RSS

DOI: 10.1055/s-0042-1754348
Reducing infection risk in multiple sclerosis and neuromyelitis optica spectrum disorders: a Brazilian reference center's approach
Redução do risco de infeção em esclerose múltipla e doença do espectro neuromielite óptica: abordagem de um centro de referência brasileiroAuthors
Abstract
Background Multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD) are the most common autoimmune diseases of the central nervous system (CNS). They present chronic relapsing courses that demand treatment with disease-modifying drugs (DMDs) to prevent inflammatory activity. Disease-modifying drugs lead to immunomodulation or immunosuppression through diverse mechanisms (e.g., shifting lymphocyte and cytokine profile, suppressing specific lymphocyte subpopulations). Thus, patients are more prone to infectious complications and associated worsening of disease.
Objective To present feasible strategies for mitigating the infection risk of MS and NMOSD treated patients.
Methods Targeted literature review concerning the management of infection risk with an emphasis on vaccination, therapy-specific measures, and particularities of the Brazilian endemic infectious diseases' scenario.
Conclusion We propose a vaccination schedule, infectious screening routine, and prophylactic measures based on the current scientific evidence. Awareness of emergent tropical diseases is necessary due to evidence of demyelinating events and possible parainfectious cases of MS and NMOSD.
Resumo
Antecedentes A esclerose múltipla (EM) e a doença do espectro neuromielite optica (NMOSD) são as doenças autoimunes mais comuns do sistema nervoso central (SNC). Ambas apresentam curso crônico com recaídas (surtos) e exigem tratamento com drogas modificadoras de doenças (DMDs) para a prevenção de atividade inflamatória. As DMDs levam à imunomodulação ou imunossupressão através de diversos mecanismos (por exemplo deslocando e/ou suprimindo subpopulações linfocitárias ou alterando perfil de produção de citocinas). Desta forma, os pacientes com EM ou NMOSD são mais propensos a complicações infecciosas, as quais podem levar ao agravamento de suas doenças de base.
Objetivo Apresentar estratégias viáveis para mitigar o risco de infecção de pacientes com EM ou NMOSD sob tratamento.
Métodos Revisão bibliográfica focada em manejo de risco de infecção com ênfase em vacinação, medidas específicas de tratamento e particularidades de doenças infecciosas endêmicas do Brasil.
Conclusão Propomos um calendário de vacinação, rotina de triagem infecciosa e medidas profiláticas baseadas em evidências científicas atuais. A conscientização das doenças tropicais emergentes é necessária devido a evidências de eventos desmielinizantes e possíveis casos parainfecciosos de EM e NMOSD.
Authors' Contributions
BAGRG: conceived and wrote the review; LBF, GDS, CCDD, RBP: wrote the review; ANL, ACT: critically appraised the review; MFM, SLAP, DC: conceived and critically appraised the review.
Publication History
Received: 07 June 2021
Accepted: 04 October 2021
Article published online:
04 October 2022
© 2022. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Leray E, Moreau T, Fromont A, Edan G. Epidemiology of multiple sclerosis. Rev Neurol (Paris) 2016; 172 (01) 3-13
- 2 Fragoso YD, Elso FG, Carrá A. Differential diagnosis of multiple sclerosis in Latin America. Mult Scler J Exp Transl Clin 2017; 3 (03) 2055217317714279
- 3 Solomon AJ. Diagnosis, Differential Diagnosis, and Misdiagnosis of Multiple Sclerosis. Continuum (Minneap Minn) 2019; 25 (03) 611-635
- 4 Arvin AM, Wolinsky JS, Kappos L. et al. Varicella-zoster virus infections in patients treated with fingolimod: risk assessment and consensus recommendations for management. JAMA Neurol 2015; 72 (01) 31-39
- 5 Winthrop KL, Mariette X, Silva JT. et al. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Soluble immune effector molecules [II]: agents targeting interleukins, immunoglobulins and complement factors). Clin Microbiol Infect 2018; 24 (Suppl. 02) S21-S40
- 6 Buonomo AR, Zappulo E, Viceconte G, Scotto R, Borgia G, Gentile I. Risk of opportunistic infections in patients treated with alemtuzumab for multiple sclerosis. Expert Opin Drug Saf 2018; 17 (07) 709-717
- 7 Olberg HK, Eide GE, Cox RJ. et al. Antibody response to seasonal influenza vaccination in patients with multiple sclerosis receiving immunomodulatory therapy. Eur J Neurol 2018; 25 (03) 527-534
- 8 Kim W, Kim SH, Huh SY. et al. Reduced antibody formation after influenza vaccination in patients with neuromyelitis optica spectrum disorder treated with rituximab. Eur J Neurol 2013; 20 (06) 975-980
- 9 Bar-Or A, Calkwood JC, Chognot C. et al. Effect of ocrelizumab on vaccine responses in patients with multiple sclerosis: The VELOCE study. Neurology 2020; 95 (14) e1999-e2008
- 10 Schwid SR, Decker MD, Lopez-Bresnahan M. Rebif-Influenza Vaccine Study Investigators. Immune response to influenza vaccine is maintained in patients with multiple sclerosis receiving interferon beta-1a. Neurology 2005; 65 (12) 1964-1966
- 11 Bar-Or A, Freedman MS, Kremenchutzky M. et al. Teriflunomide effect on immune response to influenza vaccine in patients with multiple sclerosis. Neurology 2013; 81 (06) 552-558
- 12 Olberg HK, Cox RJ, Nostbakken JK, Aarseth JH, Vedeler CA, Myhr KM. Immunotherapies influence the influenza vaccination response in multiple sclerosis patients: an explorative study. Mult Scler 2014; 20 (08) 1074-1080
- 13 Metze C, Winkelmann A, Loebermann M. et al. Immunogenicity and predictors of response to a single dose trivalent seasonal influenza vaccine in multiple sclerosis patients receiving disease-modifying therapies. CNS Neurosci Ther 2019; 25 (02) 245-254
- 14 Keshtkar-Jahromi M, Argani H, Rahnavardi M. et al. Antibody response to influenza immunization in kidney transplant recipients receiving either azathioprine or mycophenolate: a controlled trial. Am J Nephrol 2008; 28 (04) 654-660
- 15 von Hehn C, Howard J, Liu S. et al. Immune response to vaccines is maintained in patients treated with dimethyl fumarate. Neurol Neuroimmunol Neuroinflamm 2017; 5 (01) e409
- 16 Lebrun C, Vukusic S. French Group for Recommendations in Multiple Sclerosis (France4MS) and the Société Francophone de la Sclérose En Plaques (SFSEP). Immunization and multiple sclerosis: Recommendations from the French multiple sclerosis society. Mult Scler Relat Disord 2019; 31: 173-188
- 17 Farez MF, Correale J, Armstrong MJ. et al. Practice guideline update summary: Vaccine-preventable infections and immunization in multiple sclerosis: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2019; 93 (13) 584-594
- 18 Mealy MA, Cook LJ, Pache F. et al. Vaccines and the association with relapses in patients with neuromyelitis optica spectrum disorder. Mult Scler Relat Disord 2018; 23: 78-82
- 19 Sociedade Brasileira de Imunizações. Calendário de Vacinaçao Pacientes Especiais 2020-2021. 2020
- 20 Ministério da Saúde. Manual dos Centros de Referência para Imunobiológicos Especiais- 5a edição; 2019
- 21 Merck. Mavenclad - prescribing information; 2019
- 22 Armstrong C. IDSA releases recommendations on vaccinations in immunocompromised patients. Am Fam Physician 2014; 90: 664-666
- 23 Berkhout A, Clark JE, Wen SC-H. In utero exposure to biologic disease-modifying anti-rheumatic drugs and effects to the infant: infectious complications, vaccine response, and safety of live vaccine administration. Expert Rev Vaccines 2019; 18 (05) 495-504
- 24 Chitnis T. Pediatric Central Nervous System Demyelinating Diseases. Continuum (Minneap Minn) 2019; 25 (03) 793-814
- 25 Hughes AM, Ponsonby AL, Dear K. et al; Ausimmune Investigator Group. Childhood infections, vaccinations, and tonsillectomy and risk of first clinical diagnosis of CNS demyelination in the Ausimmune Study. Mult Scler Relat Disord 2020; 42: 102062
- 26 Suleiman L, Waubant E, Aaen G. et al; Network of Pediatric Multiple Sclerosis Centers.. Early infectious exposures are not associated with increased risk of pediatric-onset multiple sclerosis. Mult Scler Relat Disord 2018; 22: 103-107
- 27 Di Pietrantonj C, Rivetti A, Marchione P, Debalini MG, Demicheli V. Vaccines for measles, mumps, rubella, and varicella in children. Cochrane Database Syst Rev 2020; 2020: •••
- 28 Stowe J, Andrews N, Miller E. Do Vaccines Trigger Neurological Diseases? Epidemiological Evaluation of Vaccination and Neurological Diseases Using Examples of Multiple Sclerosis, Guillain-Barré Syndrome and Narcolepsy. CNS Drugs 2020; 34 (01) 1-8
- 29 Langer-Gould A, Qian L, Tartof SY. et al. Vaccines and the risk of multiple sclerosis and other central nervous system demyelinating diseases. JAMA Neurol 2014; 71 (12) 1506-1513
- 30 Luna G, Alping P, Burman J. et al. Infection Risks Among Patients With Multiple Sclerosis Treated With Fingolimod, Natalizumab, Rituximab, and Injectable Therapies. JAMA Neurol 2020; 77 (02) 184-191
- 31 Barmettler S, Ong MS, Farmer JR, Choi H, Walter J. Association of Immunoglobulin Levels, Infectious Risk, and Mortality With Rituximab and Hypogammaglobulinemia. JAMA Netw Open 2018; 1 (07) e184169
- 32 Hersh CM, Cohen JA. Alemtuzumab for the treatment of relapsing-remitting multiple sclerosis. Immunotherapy 2014; 6 (03) 249-259
- 33 Lycke J. et al. Lymphocyte subset dynamics following alemtuzumab administration in the CARE-MS I trial. in 89; 2012
- 34 Benamu E, Montoya JG. Infections associated with the use of eculizumab: recommendations for prevention and prophylaxis. Curr Opin Infect Dis 2016; 29 (04) 319-329
- 35 Fisher H, Oluboyede Y, Chadwick T. et al. Continuous low-dose antibiotic prophylaxis for adults with repeated urinary tract infections (AnTIC): a randomised, open-label trial. Lancet Infect Dis 2018; 18 (09) 957-968
- 36 Ciardi MR. et al. Reactivation of Hepatitis B Virus with Immune-Escape Mutations after Ocrelizumab Treatment for Multiple Sclerosis. Open Forum Infect Dis 2019; 6: 1-3
- 37 Reddy KR, Beavers KL, Hammond SP, Lim JK, Falck-Ytter YT. American Gastroenterological Association Institute. American Gastroenterological Association Institute guideline on the prevention and treatment of hepatitis B virus reactivation during immunosuppressive drug therapy. Gastroenterology 2015; 148 (01) 215-219 , quiz e16–e17
- 38 Idilman R. The summarized of EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. Turk J Gastroenterol 2017; 28 (05) 412-416
- 39 Epstein DJ, Dunn J, Deresinski S. Infectious complications of multiple sclerosis therapies: Implications for screening, prophylaxis, and management. Open Forum Infect Dis 2018; 5 (08) ofy174
- 40 Nguyen ML, Flowers L. Cervical cancer screening in immunocompromised women. Obstet Gynecol Clin North Am 2013; 40 (02) 339-357
- 41 Triplett J, Kermode AG, Corbett A, Reddel SW. Warts and all: Fingolimod and unusual HPV-associated lesions. Mult Scler 2019; 25 (11) 1547-1550
- 42 Baldassari LE, Feng J, Macaron G. et al. Tuberculosis screening in multiple sclerosis: effect of disease-modifying therapies and lymphopenia on the prevalence of indeterminate TB screening results in the clinical setting. Mult Scler J Exp Transl Clin 2019; 5 (03) 2055217319875467
- 43 Navas C, Torres-Duque CA, Munoz-Ceron J. et al. Diagnosis and treatment of latent tuberculosis in patients with multiple sclerosis, expert consensus. On behalf of the Colombian Association of Neurology, Committee of Multiple Sclerosis. Mult Scler J Exp Transl Clin 2018; 4 (01) 2055217317752202
- 44 Mills EA, Mao-Draayer Y. Understanding Progressive Multifocal Leukoencephalopathy Risk in Multiple Sclerosis Patients Treated with Immunomodulatory Therapies: A Bird's Eye View. Front Immunol 2018; 9: 138
- 45 Van Assche G, Van Ranst M, Sciot R. et al. Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn's disease. N Engl J Med 2005; 353 (04) 362-368
- 46 Kim W, Kim HJ. Monoclonal Antibody Therapies for Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder. J Clin Neurol 2020; 16 (03) 355-368
- 47 Berger JR, Malik V, Lacey S, Brunetta P, Lehane PB. Progressive multifocal leukoencephalopathy in rituximab-treated rheumatic diseases: a rare event. J Neurovirol 2018; 24 (03) 323-331
- 48 Conway DS, Hersh CM, Harris HC, Hua LH. Duration of natalizumab therapy and reasons for discontinuation in a multiple sclerosis population. Mult Scler J Exp Transl Clin 2020; 6 (01) 2055217320902488
- 49 Foley J. et al. The 5-year Tysabri global observational program in safety (TYGRIS) study confirms the long-term safety profile of natalizumab treatment in multiple sclerosis. Mult Scler Relat Disord 2020;39
- 50 Ho PR, Koendgen H, Campbell N, Haddock B, Richman S, Chang I. Risk of natalizumab-associated progressive multifocal leukoencephalopathy in patients with multiple sclerosis: a retrospective analysis of data from four clinical studies. Lancet Neurol 2017; 16 (11) 925-933
- 51 Ryerson LZ, Foley J, Chang I. et al. Risk of natalizumab-associated PML in patients with MS is reduced with extended interval dosing. Neurology 2019; 93 (15) e1452-e1462
- 52 Wattjes MP, Rovira À, Miller D. et al; MAGNIMS study group. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis–establishing disease prognosis and monitoring patients. Nat Rev Neurol 2015; 11 (10) 597-606
- 53 Kartau M, Sipilä JO, Auvinen E, Palomäki M, Verkkoniemi-Ahola A. Progressive Multifocal Leukoencephalopathy: Current Insights. Degener Neurol Neuromuscul Dis 2019; 9: 109-121
- 54 Lachiewicz AM, Srinivas ML. Varicella-zoster virus post-exposure management and prophylaxis: A review. Prev Med Rep 2019; 16: 101016
- 55 SPSP. Spsp – nota informativa (julho de 2018): atualização sobre sarampo. 1‣13; 2020.
- 56 Ministério da Saúde. Monitoramento do Período Sazonal da Febre Amarela Brasil – 2018/2019. informe no 03 | 2018/2019.
- 57 Domingo C, Niedrig M. Safety of 17D derived yellow fever vaccines. Expert Opin Drug Saf 2009; 8 (02) 211-221
- 58 Huttner A, Eperon G, Lascano AM. et al. Risk of MS relapse after yellow fever vaccination: A self-controlled case series. Neurol Neuroimmunol Neuroinflamm 2020; 7 (04) 1-6
- 59 Farez MF, Correale J. Yellow fever vaccination and increased relapse rate in travelers with multiple sclerosis. Arch Neurol 2011; 68 (10) 1267-1271
