RSS-Feed abonnieren
DOI: 10.1055/s-0031-1273231
© Georg Thieme Verlag KG Stuttgart · New York
Neuropsychopharmaka verändern den intrazellulären pH-Wert von zentralen Neuronen
Neuropsychopharmaca Influence the Intracellular pH Value of Central NeuronsPublikationsverlauf
Publikationsdatum:
19. Mai 2011 (online)

Zusammenfassung
Ähnlich wie die Elektrolyt-Homöostase ist auch der intrazelluläre pH-Wert (pHi) von Neuronen besonders intensiv kontrolliert. Dieses geschieht beispielsweise durch spezielle membranständige Systeme, die Säureäquivalente in die Zelle hinein und wieder heraus transportieren können. Die Regulation des pHi dient unter anderem der Steuerung der neuronalen Erregbarkeit, da eine Erregbarkeitssteigerung in den meisten Neuronen den pHi senkt und vice versa eine intrazelluläre Azidose im Sinne einer negativen Rückkopplungs-Schleife die Erregbarkeit wieder senkt. Änderungen des pHi haben darüber hinaus Einflüsse auf beinahe jede Zellfunktion. Da über die Wirkung von Neuropsychopharmaka auf die H + -Homöostase wenig bekannt ist, untersuchten wir diesbezüglich mehrere Antipsychotika, Antidepressiva, Antikonvulsiva und Lithium. Als Modell wurden hippocampale CA 3-Neurone in Gewebeschnitten (vom Meerschweinchen) eingesetzt, die mit dem intrazellulären pHi-Indikator BCECF gefärbt worden waren. In therapeutischen und supratherapeutischen Konzentrationen veränderten alle gemessenen Antipsychotika, die meisten Antidepressiva und gut die Hälfte aller untersuchten Antikonvulsiva reversibel den pHi dieser Neurone. Obwohl diesbezüglich noch bestätigende In-vivo-Experimente fehlen, möchten wir auf die mögliche pHi-Aktivität von Neuropsychopharmaka aufmerksam machen, insbesondere, wenn deren therapeutische oder toxische Wirkungen diskutiert werden.
Abstract
The intracellular pH (pHi) of neurons is tightly regulated, mainly by membrane-bound transporters acting as acid extruders or acid loaders. Regulation of pHi helps to control neuronal excitability, as increased bioelectric activity moderately lowers pHi and, in the sense of a negative feedback loop, intracellular acidosis mostly reduces neuronal excitability. Moreover, a change of pHi widely influences complex cellular functions. With respect to neuropsychopharmaca, little is known about whether or not they may affect neuronal H + -homeostasis. To this aim, we tested several antipsychotics, antidepressants, anticonvulsants, and lithium for effects on neuronal pHi, using guinea pig hippocampal slice preparations in which CA 3 pyramidal neurons were loaded with the pHi-sensitive dye BCECF-AM. All antipsychotics, most antidepressants and about half of the anticonvulsants tested so far elicited reversible changes of neuronal pHi when applied at therapeutic and supratherapeutic concentrations. Although these results await confirmatory in vivo experiments, we believe that the pHi activity of neuropsychopharmaca needs further attention, especially when therapeutic mechanisms or even harmful side effects are discussed.
Schlüsselwörter
intrazellulärer pH - Neuropsychopharmaka - pH-Regulation
Keywords
intracellular pH - neuropsychopharmaca - pH regulation
Literatur
- 1 Brunton L L, Lazo J S, Parker K L (Eds).. Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 11e. The McGraw-Hill Companies. , online version 2010.
MissingFormLabel
- 2 Benkert O, Hippius H. Psychiatrische Pharmakotherapie. 7. Auflage Heidelberg: Springer Verlag; 2009
MissingFormLabel
- 3
Bonnet U, Wiemann M.
Intracellular free protons: relevance for neuropsychopharmacology?.
Pharmacopsychiatry.
1999;
32
173
MissingFormLabel
- 4
Tombaugh G C.
Mild acidosis delays hypoxic spreading depression and improves neuronal recovery in
hippocampal slices.
J Neurosci.
1994;
14
5635-5643
MissingFormLabel
- 5
Wang J W, Richardson S R, Thayer S A.
Intracellular acidification is not a prerequisite for glutamate-triggered death of
cultured hippocampal neurons.
Neurosci Lett.
1995;
186
139-144
MissingFormLabel
- 6
Tombaugh G C, Sapolsky R M.
Evolving concepts about the role of acidosis in ischemic neuropathology.
J Neurochem.
1993;
61
793-803
MissingFormLabel
- 7
Vornov J, Thomas A G, Jo D.
Protective effects of extracellular acidosis and blockade of sodium/hydrogen ion exchange
during recovery from metabolic inhibition in neuronal tissue culture.
J Neurochem.
1996;
67
2379-2389
MissingFormLabel
- 8
Saybasili H.
The protective role of mild acidic pH shifts on synaptic NMDA current in hippocampal
slices.
Brain Res.
1998;
786
128-132
MissingFormLabel
- 9 Siesjö B K. Acid-base homeostasis in the brain: physiology, chemistry, and neurochemical pathology. In: Kogure K, Hossman K A, Siesjö B K, (Eds) Progress in Brain Research 63. Amsterdam: Elsevier; 1985: 121-154
MissingFormLabel
- 10
Chesler M, Kaila K.
Modulation of pH by neuronal activity.
Trends Neurosci.
1992;
15
396-402
MissingFormLabel
- 11
Trapp S, Lückermann M, Brooks P A et al.
Acidosis of rat dorsal vagal neurons in situ during spontaneous and evoked activity.
J Physiol.
1996;
496
695-710
MissingFormLabel
- 12
Bonnet U, Wiemann M, Bingmann D.
CO2 /HCO3–withdrawal from the bath medium of hippocampal slices: biphasic effect on intracellular
pH and bioelectric activity of CA 3-neurons.
Brain Res.
1998;
796
161-170
MissingFormLabel
- 13
Xiong Z Q, Saggau P, Stringer J L.
Activity-dependent intracellular acidification correlates with the duration of seizure
activity.
J Neurosci.
2000;
20
1290-1296
MissingFormLabel
- 14
Leniger T, Thöne J, Bonnet U et al.
Levetiracetam inhibits Na+ -dependent Cl–/HCO3
– -exchange of adult hippocampal CA 3 neurones from guinea-pigs.
Br J Pharmacol.
2004;
142
1073-1080
MissingFormLabel
- 15
Kaila K.
Ionic basis of GABAA receptor channel function in the nervous system.
Prog Neurobiol.
1994;
42
489-537
MissingFormLabel
- 16
Bonnet U, Bingmann D.
GABAA-responses of CA 3 neurones: contribution of bicarbonate and of Cl–-extrusion mechanisms.
NeuroReport.
1995;
6
700-704
MissingFormLabel
- 17
Hartley Z, Dubinsky J M.
Changes in intracellular pH associated with glutamate excitotoxicity.
J Neurosci.
1993;
13
4690-4699
MissingFormLabel
- 18
Amato A, Ballerini C, Attwell D.
Intracellular pH changes produced by glutamate uptake in rat hippocampal slices.
J Neurophysiol.
1994;
72
1686-1696
MissingFormLabel
- 19
Trudeau L -E, Parpura V, Haydon P G.
Activation of neurotransmitter release in hippocampal nerve terminals during recovery
from intracellular acidification.
J Neurophysiol.
1999;
81
2627-2635
MissingFormLabel
- 20
Cannizzaro C, Monastero R, Vacca M et al.
[3 H]-DA release evoked by low pH medium and internal H+ accumulation in rat hypothalamic synaptosomes: involvement of calcium ions.
Neurochem Int.
2003;
43
9-17
MissingFormLabel
- 21
Toll L, Howard B D.
Role of Mg2+-ATPase and pH gradient in the storage of catecholamines in synaptic vesicles.
Biochemistry.
1978;
17
2517-2523
MissingFormLabel
- 22
Moriyama Y, Futai M.
H+-ATPase, a primary pump for accumulation of neurotransmitters, is a major constituent
of brain synaptic vesicles.
Biochem Biophys Res Commun.
1990;
173
443-448
MissingFormLabel
- 23
Traynelis S F, Cull-Candy S G.
Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons.
Nature.
1990;
345
347-350
MissingFormLabel
- 24
Chesler M.
Regulation and modulation of pH in the brain.
Physiol Rev.
2003;
83
1183-1221
MissingFormLabel
- 25
Stella N, Pellerin L, Magistretti P J.
Modulation of the glutamate-evoked release of arachidonic acid from mouse cortical
neurons: involvement of a pH-sensitive membrane phospholipase A2.
J Neurosci.
1995;
15
3307-3317
MissingFormLabel
- 26
Vignes M, Blanc E, Guiramand J et al.
A modulation of glutamate-induced phosphoinositide breakdown by intracellular pH changes.
Neuropharmacology.
1996;
45
1595-1604
MissingFormLabel
- 27 Schwiening C J, Thomas R C. pH consequences of calcium-regulation. In: Kaila K, Ransom B R, (Eds.) pH and brain function,. New York: Wiley-Liss; 1998: 373-393
MissingFormLabel
- 28
Takahashi K I, Copenhagen D R.
Modulation of neuronal function by intracellular pH.
Neurosci Res.
1996;
24
109-116
MissingFormLabel
- 29
MacVicar B, Jahnsen H.
Uncoupling of CA 3 pyramidal neurons by propionate.
Brain Res.
1985;
330
141-145
MissingFormLabel
- 30
Perez-Velazquez J L, Valiante T A, Carlen P L.
Modulation of gap junctional mechanisms during calcium-free induced field burst activity:
a possible role for electrotonic coupling in epileptogenesis.
J Neurosci.
1994;
14
4308-4317
MissingFormLabel
- 31
Orlowski J, Grinstein S.
Na+/H+ exchangers of mammalian cells.
J Biol Chem.
1997;
272
22373-22376
MissingFormLabel
- 32 Bevensee M O, Boron W F. pH regulation in mammalian neurons. (Eds) pH and brain function. New York: Wiley-Liss; 1998: 211-233
MissingFormLabel
- 33
Cox G A, Lutz C M, Yang C L et al.
Sodium/hydrogen exchanger gene defect in slow-wave epilepsy mutant mice.
Cell.
1997;
91
139-148
MissingFormLabel
- 34
Hentschke M, Wiemann M, Hentschke S et al.
Mice with a targeted disruption of the Cl–/HCO3
– exchanger display a reduced seizure threshold.
Mol Cell Biol.
2006;
26
182-191
MissingFormLabel
- 35
Jacobs S, Ruusuvuori E, Sipilä S T et al.
Mice with targeted Slc4a10 gene disruption have small brain ventricles and show reduced
neuronal excitability.
PNAS.
2008;
105
311-316
MissingFormLabel
- 36
Kato T, Inubushi T, Kato N.
Magnetic resonance spectroscopy in affective disorders.
J Neuropsychiat Clin Neurosci.
1998;
10
133-147
MissingFormLabel
- 37
Van der Grond J, Gerson J R, Laxter K D et al.
Regional distribution of interictal 31P metabolic changes in patients with temporal lobe epilepsy.
Epilepsia.
1998;
39
527-536
MissingFormLabel
- 38
Maddock R J.
The lactic acid response to alkalosis in panic disorder: an integrative review.
J Neuropsychiatry Clin Neurosci.
2001;
13
22-34
MissingFormLabel
- 39
Wemmie J A, Chen J, Askwith C C et al.
The acid-activated ion channel ASIC contibutes to synaptic plasticity, learning, and
memory.
Neuron.
2002;
34
463-477
MissingFormLabel
- 40
Hoffmann E K, Simonsen L O.
Membrane mechanisms in volume and pH regulation in vertebrate cells.
Physiol Rev.
1989;
69
315-382
MissingFormLabel
- 41
Roberts Jr E L Jr, Chih C P.
The pH buffering capacity of hippocampal slices from young adult and aged rats.
Brain Res.
1998;
779
271-275
MissingFormLabel
- 42
Kornhuber J, Reichel M, Tripal P et al.
The role of ceramide in major depressive disorder.
Eur Arch Psychiatry Clin Neurosci.
2009;
259 (Suppl 2)
199-204
MissingFormLabel
- 43
Smith G AM, Brett C L, Church J.
Effects of noradrenaline on intracellular pH in acutely dissociated adult rat hippocampal
neurones.
J Physiol.
1998;
512
487-505
MissingFormLabel
- 44
Goncalves P P, Meireles S M, Neves P et al.
Synaptic vesicle Ca2
+/H+ antiport: dependence on the proton electrochemical gradient.
Brain Res Mol Brain Res.
1999;
71
178-184
MissingFormLabel
- 45 Andersen P. Organization of hippocampal neurons and their interconnections. In: Isaacson R L, Pribam K H, (Eds) The hippocampus, Vol 1: structure and development,. New York: Plenum; 1975: 155-175
MissingFormLabel
- 46
Da Silva F HL, Wittner M P, Boeijinga P H et al.
Anatomic organization and physiology of the limbic cortex.
Physiol Rev.
1990;
2
453-511
MissingFormLabel
- 47
Bonnet U, Wiemann M.
Ammonium prepulse: effects on intracellular pH and bioelectric activity of CA 3-neurones
in guinea pig hippocampal slices.
Brain Res.
1999;
840
16-22
MissingFormLabel
- 48
Bonnet U, Bingmann D, Wiltfang J et al.
Modulatory effects of neuropsychopharmaca on intracellular pH of hippocampal neurones
in.
Br J Pharmacol.
2010;
159
474-483
MissingFormLabel
- 49
Bevensee M O, Schwiening C F, Boron W F.
Use of BCECF and propidium iodide to assess membrane integrity of acutely isolated
CA 1 neurons from rat hippocampus.
J Neurosci Methods.
1995;
58
61-75
MissingFormLabel
- 50
Rambeck B, Jürgens U H, May T W et al.
Comparison of brain extracellular fluid, brain tissue, cerebrospinal fluid, and serum
concentrations of antiepileptic drugs measured intraoperatively in patients with intractable
epilepsy.
Epilepsia.
2006;
47
681-94
MissingFormLabel
- 51
Wang X, Ratnaraj N, Patsalos P N.
The pharmacokinetic inter-relationship of tiagabine in blood, cerebrospinal fluid
and brain extracellular fluid (frontal cortex and hippocampus).
Seizure.
2004;
13
574-581
MissingFormLabel
- 52
Walker M C, Tong X, Perry H et al.
Comparison of serum, cerebrospinal fluid and brain extracellular fluid pharmacokinetics
of lamotrigine.
Br J Pharmacol.
2000;
130
242-248
MissingFormLabel
- 53
Glotzbach R K, Preskorn S H.
Brain concentrations of tricyclic antidepressants: single-dose kinetics and relationship
to plasma concentrations in chronically dosed rats.
Psychopharmacology.
1982;
78
25-27
MissingFormLabel
- 54
Malberg J, Eisch A J, Nestler E J et al.
Chronic antidepressant treatment increases neurogenesis in adult hippocampus.
J Neurosci.
2000;
20
9104-9110
MissingFormLabel
- 55
Madsen T, Treschow A, Bengzon J et al.
Increased neurogenesis in a model of electroconvulsive therapy.
Biol Psychiatry.
2000;
47
1043-1049
MissingFormLabel
- 56
Duman R S.
Neuronal plasticity: consequences of stress and actions of antidepressant treatment.
Dialogues Clin Neurosci.
2004;
6
157-169
MissingFormLabel
- 57
Wiemann M, Splettstoesser F, Pannek H W et al.
Effects of levetiracetam and topiramate on pHi regulation of human neocortical brain
slices.
Acta Physiol.
2006;
186 (Suppl 1)
126
MissingFormLabel
- 58
Roos A, Boron W F.
Intracellular pH.
Physiol Rev.
1981;
61
296-434
MissingFormLabel
- 59
Bonnet U, Bingmann D, Wiemann M.
Intracellular pH modulates spontaneous and epileptiform bioelectric activity of hippocampal
CA 3-neurones.
Eur Neuropsychopharmacol.
2000;
97
97-103
MissingFormLabel
- 60
Pasternack M, Voipio L, Kaila K.
Intracellular carbonic anhydrase activity and its role in GABA-induced acidosis in
isolated rat hippocampal pyramidal neurons.
Acta Physiol Scand.
1993;
148
229-231
MissingFormLabel
- 61
Garnovskaya M N, Mukhin Y, Raymond J R.
Rapid activation of sodium-proton exchange and extracellular signalregulated protein
kinase in fibroblasts by G protein-coupled 5-HT1A receptor involves distinct signalling
cascades.
Biochem J.
1998;
330
489-495
MissingFormLabel
- 62
Schewe B, Schmälzlin E, Walz B.
Intracellular pH homeostasis and serotonin-induced pH changes in Calliphora salivary
glands: the contribution of V-ATPase and carbonic anhydrase.
The Journal of Experimental Biology.
2008;
211
805-815
MissingFormLabel
- 63
Moy L Y, Wang S P, Sonsalla P K.
Mitochondrial stress-induced dopamine efflux and neuronal damage by malonate involves
the dopamine transporter.
J Pharmacol Experimental Therap.
2007;
320
747-756
MissingFormLabel
- 64
Wreden C C, Johnson J, Tran C et al.
The H+-coupled electrogenic lysosomal amino acid transporter LYAAT1 localizes to the axon
and plasma membrane of hippocampal neurons.
J Neuroscience.
2003;
23
1265-1275
MissingFormLabel
- 65
Numata M, Petrecca K, Lake N et al.
Identification of a mitochondrial Na+/H+ exchanger.
J Biol Chem.
1998;
273
6951-6959
MissingFormLabel
- 66
Bonnet U, Leniger T, Wiemann M.
Moclobemide reduces intracellular pH and neuronal activity of CA 3 neurones in guinea-pig
hippocampal slices-implication for its neuroprotective properties.
Neuropharmacology.
2000;
39
2067-2074
MissingFormLabel
- 67
Cao Y, Mager S, Lester H A.
H+permeation and pH regulation at a mammalian serotonin transporter.
J Neurosci.
1997;
17
2257-2266
MissingFormLabel
- 68 LeBlanc G, Bassilana M, Damiano-Forano E. Na+/H+exchange in bacteria and organelles. In: Grinstein S, editor. Na+/H+exchange.. Florida: CRC Press; 1988: 103-117
MissingFormLabel
- 69
Kobaysashi Y, Pang T, Iwamoto T et al.
Lithium activates mammalian Na+/H+-exchangers: isoform specificity and inhibition by genistein.
Eur J Physiol.
2000;
439
455-462
MissingFormLabel
- 70
Greenbaum N, Wilson D F.
Role of intramitochondrial pH in the energetics and regulation of mitochondrial oxidative
phosphorylation.
Biochim Biophys Acta.
1991;
1058
113-120
MissingFormLabel
- 71
Skulachev V P.
Mitochondrial physiology and pathology, concepts of programmed death of organelles,
cells and organisms.
Mol Aspects Med.
1999;
20
139-184
MissingFormLabel
- 72
Friberg H, Wieloch T.
Mitochondrial permeability transition in acute neurodegeneration.
Biochimie.
2002;
84
241-250
MissingFormLabel
- 73
Cohen G, Kesler N.
Monoamine oxidase and mitochondrial repiration.
J Neurochemistry.
1999;
73
2310-2315
MissingFormLabel
- 74
Bonnet U, Scherbaum N, Wiemann M.
The endogenous alkaloid harmane: acidifying and activity-reducing effects on hippocampal
neurons in vitro.
Progress in Neuro-Psychopharmacology & Biological Psychiatry.
2008;
32
362-367
MissingFormLabel
- 75
Büsselberg D, Wiemann M, Bingmann D et al.
(2002) Monoamino oxidase inhibition is associated with neuronal acidification.
Pflügers Arch Eur J Physiol.
2002;
443 (Suppl)
269
MissingFormLabel
- 76
Marcocci L, De Marchi U, Salvi M et al.
Tyramine and monoamine oxidase inhibitors as modulators of the mitochondrial membrane
permeability transition.
J Membr Biol.
2002;
188
23-31
MissingFormLabel
- 77
Wallace K B, Starkow A A.
Mitochondrial targets of drug toxicity.
Annu Rev Pharmacol Toxicol.
2000;
40
353-88
MissingFormLabel
- 78
Wall S M, Kraut J A, Muallem S.
Modulation of Na+-H+ exchange activity by intracellular Na+, H+, and Li+ in IMCD cells.
Am J Physiol.
1988;
255
F331-F339
MissingFormLabel
- 79
Bitran J A, Potter W Z, Manji H K et al.
Chronic Li+ attenuates agonist- and phorbol ester-mediated Na+/H+ antiporter activity in HL 60 cells.
Eur J Pharmacol.
1990;
188
193-202
MissingFormLabel
- 80
Rumbach L, Mutet C, Cremel G et al.
Effects of sodium valproate on mitochondrial membranes: electron paramagnetic resonance
and transmembrane protein movement studies.
Mol Pharmacol.
1986;
30
270-273
MissingFormLabel
- 81
Benavides J, Martin A, Ugarte M et al.
Inhibition by valproic acid of pyruvate uptake by brain mitochondria.
Biochem Pharmacol.
1982;
31
1633-1636
MissingFormLabel
- 82
Bonnet U, Bingmann D, Leniger T et al.
Valproate acidifies hippocampal CA 3-neurones – a novel mode of action.
Eur Neuropsychopharmacol.
2002;
12
279-285
MissingFormLabel
- 83 Woodbury D M, Kemp J W. Other antiepileptic drugs. Sulfonamides and derivates: acetazolamide. In: Levy R, Mattson R, Meldrum B, (Eds). Antiepileptic drugs.. New York: Raven Press; 1989: 855-875
MissingFormLabel
- 84
Leniger T, Wiemann M, Bingmann D et al.
Carbonic anhydrase inhibitor sulthiame reduces intracellular epileptiform activity
of hippocampal CA 3 neurones.
Epilepsia.
2002;
43
469-474
MissingFormLabel
- 85
Leniger T, Thöne J, Wiemann M.
Topiramate modulates pH of hippocampal CA 3 neurons by combined effects on carbonic
anhydrase and Cl–/HCO3
– -exchange.
Br J Pharmacol.
2004;
142
831-842
MissingFormLabel
- 86
Ali A, Ahmad F J, Pillai K K et al.
Amiloride protects against pentylenetetrazole-induced kindling in mice.
Br J Pharmacol.
2005;
145
880-884
MissingFormLabel
- 87
Hansen N, Finzel M, Block F.
Antiepileptika-induzierte Enzephalopathie.
Fortschr Neurol Psychiat.
2010;
78
590-598
MissingFormLabel
- 88
Hugg J W, Laxer K D, Matson G B et al.
Lateralization of human focal epilepsy by 31P magnetic resonance spectroscopic imaging.
Neurology.
1992;
42
2011-2018
MissingFormLabel
- 89
Garcia P A, Laxer K D, Grond van der J et al.
Phosphorus Magnetic Resonance Spectroscopy imaging in patients with frontal lobe epilepsy.
Ann Neurol.
1994;
35
217-221
MissingFormLabel
- 90
Hamakawa H, Murashita J, Yamada N et al.
Reduced intracellular pH in the basal ganglia and whole brain measured by 31P-MRS in bipolar disorder.
Psychiatry and Clinical Neurosciences.
2004;
58
82-88
MissingFormLabel
- 91
Cowley D S, Arana G W.
The diagnostic utility of lactate sensitivity in panic disorder.
Arch Gen Psychiatry.
1990;
47
277-284
MissingFormLabel
- 92
Shioiri T, Kato T, Murashita J et al.
High-energy phosphate metabolism in the frontal lobes of patients with panic disorder
detected by phase-encoded 31P-MRS.
Biol Psychiatry.
1996;
40
785-793
MissingFormLabel
- 93
Xiang Z M, Bergold P J.
Synaptic depression and neuronal loss in transiently acidic hippocampal slice cultures.
Brain Res.
2000;
881
77-87
MissingFormLabel
- 94
Zha X M, Wemmie J A, Green S H et al.
Acid-sensing ion channel 1a is a postsynaptic proton receptor that affects the density
of dendritic spines.
PNAS.
2006;
103
16556-16561
MissingFormLabel
- 95
Soleimani M, Singh G.
Physiologic and molecular aspects of Na+/H+ exchangers in health and disease processes.
J Investig Med.
1995;
43
419-430
MissingFormLabel
- 96
Kaku D A, Giffard R G, Choi D W.
Neuroprotective effects of glutamate antagonists and extracellular acidity.
Science.
1993;
260
1516-1518
MissingFormLabel
- 97
Liu C N, Somps C J.
Na+/H+-exchanger-1 inhibitors reduce neuronal excitability and alter Na+-channel inactivation properties in rat primary sensory neurons.
Toxicological Sciences.
2008;
103
346-353
MissingFormLabel
- 98
Bonnet U, Wiemann M, Bingmann D et al.
Transmembrane acid extrusion mechanisms: a target for neuropsychopharmacological drug
design?.
Pharmacopsychiatry.
1997;
30
154
MissingFormLabel
- 99
Bonnet U, Leniger T, Wiemann M.
Alteration of intracellular pH and activity of CA 3-pyramidal cells in guinea pig
hippocampal slices by inhibition of transmembrane acid extrusion.
Brain Research.
2000;
872
116-124
MissingFormLabel
- 100
Sánchez C, Hyttel J.
Comparison of the effects of antidepressants and their metabolites on reuptake of
biogenic amines and on receptor binding.
Cell Mol Neurobiology.
1999;
19
467-488
MissingFormLabel
- 101
Richelson E.
Pharmacology of antidepressants.
Mayo Clin Proc.
2001;
76
511-527
MissingFormLabel
- 102
Raley-Susman K M, Sapolsky R M, Kopito R R.
Cl–/HCO3
– exchange function differs in adult and fetal hippocampal neurons.
Brain Res.
1993;
614
308-314
MissingFormLabel
- 103
Bosman G J, Renkawek K, Van Workum F P et al.
Neuronal anion exchange proteins in Alzheimer’s disease pathology.
J Neural Transm Suppl.
1998;
54
248-257
MissingFormLabel
- 104
Rae C, Scott R B, Thompson C H et al.
Is pH a biochemical marker of IQ?.
Proc R Soc Lond B.
1996;
263
1061-1064
MissingFormLabel
- 105
Parker M D, Bouyer P, Daley C M et al.
Cloning and characterization of novel human SCL4A8 gene products encoding Na+ -driven Cl–/HCO3
– exchanger variants NDCBE-A, -C, -D.
Physiol Genomics.
2008;
34
265-276
MissingFormLabel
- 106 Bevensee M O, Boron W F. Fluorescence indicators. In: Kaila K, Ransom B R (Eds) pH and brain function.. New York: Wiley-Liss; 1998: 129-153
MissingFormLabel
Prof. Dr. med. Udo Bonnet
Klinik für Psychiatrie und Psychotherapie Evangelisches Krankenhaus Castrop-Rauxel,
Akademisches Lehrkrankenhaus der Universität Duisburg-Essen
Grutholzallee 21
44577 Castrop-Rauxel
eMail: u.bonnet@evk-castrop-rauxel.de