Abstract
A copper(II)-catalyzed reaction of α-azido-N -allylamide synthetic under an oxygen
atmosphere resulted in the formation of 2-formyl pyrazinones. The
present transformation was characterized by the following steps:
1) 1,3-dipolar cycloaddition of the azido part onto the intramolecular
alkene to give bicyclic aziridine intermediates; 2) further copper(II)-catalyzed
oxygenation-oxidation of the aziridines to give 2-formyl
pyrazinones.
Key words
pyrazinone - organic azides - 1,3-dipolar cycloaddition - copper - oxygen
References and Notes
For recent reports on the bioactivity
study of substituted pyrazines and their derivatives, see:
<A NAME="RD14511ST-1A">1a </A>
Kerekes AD.
Esposite SJ.
Doll RJ.
Tagat JR.
Yu T.
Xiao Y.
Zhang Y.
Prelusky DB.
Tevar S.
Gray K.
Terracina GA.
Lee S.
Jones J.
Liu M.
Basso AD.
Smith EB.
J.
Med. Chem.
2011,
54:
201
<A NAME="RD14511ST-1B">1b </A>
Andjelkovic M. inventors; WO 2008,040,651.
<A NAME="RD14511ST-1C">1c </A>
Parlow JJ.
Case BL.
Dice TA.
Fenton RL.
Hayes MJ.
Jones DE.
Neumann WL.
Wood RS.
Lachance RM.
Girard TJ.
Nicholson NS.
Clare M.
Stegeman RA.
Stevens AM.
Stallings WC.
Kurumbail RG.
South MS.
J. Med. Chem.
2003,
46:
4050
<A NAME="RD14511ST-1D">1d </A>
Yang CC.
Jick SS.
Jick H.
Arch. Intern. Med.
2003,
163:
1926
<A NAME="RD14511ST-1E">1e </A>
Mack A.
Salazar JO.
Formulary
2003,
38:
582
<A NAME="RD14511ST-2A">2a </A>
Blake KW.
Porter AEA.
Sammes PG.
J.
Chem. Soc., Perkin Trans. 1
1972,
2494
<A NAME="RD14511ST-2B">2b </A>
Birkofer L.
Chem. Ber.
1947,
80:
83
<A NAME="RD14511ST-3A">3a </A>
Bradbury RH.
Griffiths D.
Rivett JE.
Heterocycles
1990,
31:
1647
<A NAME="RD14511ST-3B">3b </A>
Rothkopf HW.
Wöhrle D.
Müller R.
Kossmehl G.
Chem. Ber.
1975,
108:
875
<A NAME="RD14511ST-3C">3c </A>
Flament I.
Stoll M.
Helv. Chim. Acta
1967,
50:
1754
<A NAME="RD14511ST-3D">3d </A>
Muehlmann FL.
Day AR.
J.
Am. Chem. Soc.
1956,
78:
242
<A NAME="RD14511ST-3E">3e </A>
Weijlard J.
Tishler M.
Erikson AE.
J.
Am. Chem. Soc.
1945,
67:
802
For recent reports on the synthesis
of substituted pyrazines and their derivatives, see:
<A NAME="RD14511ST-4A">4a </A>
Modha SG.
Trivedi JC.
Mehta VP.
Ermolat’e DS.
Van der Eycken EV.
J.
Org. Chem.
2011,
76:
846
<A NAME="RD14511ST-4B">4b </A>
Guerra PV.
Yaylayan VA.
J.
Agric. Food Chem.
2010,
58:
12523
<A NAME="RD14511ST-4C">4c </A>
Krishnakumar B.
Swaminathan M.
J. Organomet. Chem.
2010,
695:
2572
<A NAME="RD14511ST-4D">4d </A>
Adama I.
Orainb D.
Meier P.
Synlett
2004,
2031
<A NAME="RD14511ST-4E">4e </A>
Sato N.
Matsumoto K.
Takishima M.
Mochizuki K.
J. Chem. Soc., Perkin Trans.
1
1997,
3167
<A NAME="RD14511ST-4F">4f </A>
Buchi G.
Galindo J.
J. Org. Chem.
1991,
56:
2605
<A NAME="RD14511ST-5">5 </A>
Chiba S.
Zhang L.
Lee J.-Y.
J.
Am. Chem. Soc.
2010,
132:
7266
<A NAME="RD14511ST-6">6 </A>
Wang H.
Wang Y.
Liang D.
Liu L.
Zhang J.
Zhu Q.
Angew.
Chem. Int. Ed.
2011,
50:
in
press ; DOI: 10.1002/anie.201100362
<A NAME="RD14511ST-7">7 </A>
Other bases, such as K3 PO4 and
NaOAc exhibited similar reactivity, while MgO was not a viable catalyst
for this transformation.
<A NAME="RD14511ST-8">8 </A>
The structures of 3b and 3i were secured by X-ray crystallographic
analysis (see Supporting Information). The supplementary crystallographic
data of these molecules are contained in CCDC 824717 and 824717,
respectively. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/conts/retrieving.html.
Dihydropyrazinone 4 might
be formed from the proposed primary alkyl radical D (in
Scheme 7) by hydrogen abstraction from the solvent DMF. For the
process of hydrogen abstraction from the solvent DMF:
<A NAME="RD14511ST-9A">9a </A>
Minisci F.
Citterio A.
Vismara E.
Giordano C.
Tetrahedron
1985,
41:
4157
<A NAME="RD14511ST-9B">9b </A>
Palla G.
Tetrahedron
1981,
37:
2917
<A NAME="RD14511ST-10">10 </A>
General Procedure
for the Cu(II)-Catalyzed Synthesis of Pyrazinones from α-Azido-
N
-allylamides
To
a solution of N -allyl-2-azido-N -benzyl-2-phenyl-acetamide (1b , 156.1 mg, 0.510 mmol) in DMF (5.1 mL) were
added Cu(OAc)2 (18.9 mg, 0.104 mmol) and K2 CO3 (70.4
mg, 0.509 mmol), and the mixture was stirred at 80 ˚C for
2 h under an O2 atmosphere (1 atm). After cooling to
r.t., the solid was filtered through a Celite pad. To the mixture, 1
M aq HCl was added, and the organic materials were extracted twice
with Et2 O. The combined extracts were then washed with
H2 O, brine, and dried over MgSO4 . Filtration and
removal of the solvent under reduced pressure afforded a crude mixture,
which was subjected to flash column chromatography (hexane-EtOAc = 90:10)
to afford 2-formyl pyrazinone 3b (91.8
mg, 0.316 mmol) in 62% yield.
<A NAME="RD14511ST-11">11 </A>
For the synthesis of α-azido-N -allylamides 1 as
well as characterization of all new compounds, see the Supporting Information.
For generation of imine from α-azido
ketones and esters under the strong basic conditions, see:
<A NAME="RD14511ST-12A">12a </A>
Manis PA.
Rathke MW.
J.
Org. Chem.
1980,
45:
4952
<A NAME="RD14511ST-12B">12b </A>
Edwards OE.
Purushothaman KK.
Can.
J. Chem.
1964,
42:
712
<A NAME="RD14511ST-13">13 </A> One of the possibilities of the
reaction course for the formation of deallylated amide 7 is outlined below. It might commence
with radical 1,5-H shift from putative iminyl copper species to
give allylic radical, further oxidation of which would afford allylic
cation species. Addition of water to the carbocation followed by
C-N bond cleavage from resulting hemiaminal could deliver
deallylated amide 7 (Scheme 8). We recently
reported similar 1,5-H shift from iminyl copper species, see:
Zhane L.
Ang GY.
Chiba S.
Org. Lett.
2011,
13:
1622
For recent reports on the azido-alkene
1,3-dipolar cycloaddition reaction, see:
<A NAME="RD14511ST-14A">14a </A>
Hui BW.-Q.
Chiba S.
Org. Lett.
2009,
11:
729
<A NAME="RD14511ST-14B">14b </A>
Nair V.
Suja TD.
Tetrahedron
2007,
63:
12247
<A NAME="RD14511ST-14C">14c </A>
Feldman KS.
Iyer MR.
López CS.
Faza ON.
J.
Org. Chem.
2008,
73:
5090
<A NAME="RD14511ST-14D">14d </A>
Zhou Y.
Murphy PV.
Org. Lett.
2008,
10:
3777
<A NAME="RD14511ST-14E">14e </A>
Kim S.
Lee YM.
Lee J.
Lee T.
Fu Y.
Song Y.
Cho J.
Kim D.
J.
Org. Chem.
2007,
72:
4886
<A NAME="RD14511ST-14F">14f </A>
Huang X.
Shen R.
Zhang T.
J.
Org. Chem.
2007,
72:
1534
<A NAME="RD14511ST-14G">14g </A>
Feldman KS.
Iyer MR.
Hester DK.
Org. Lett.
2006,
8:
3116
<A NAME="RD14511ST-14H">14h </A>
Feldman KS.
Iyer MR.
J.
Am. Chem. Soc.
2005,
127:
4590 ;
and references cited therein
For reports on the mechanism of
the elimination of dinitrogen from triazoline intermediates with
heterolytic cleavage of the N-N bond, see:
<A NAME="RD14511ST-15A">15a </A>
Shea KJ.
Kim J.-S.
J.
Am. Chem. Soc.
1992,
114:
4846
<A NAME="RD14511ST-15B">15b </A>
Wladkowski BD.
Smith RH.
Michejda CJ.
J. Am. Chem. Soc.
1991,
113:
7893 ; and references cited therein
A radical pathway via homolytic
cleavage of the N-N bond of triazoline intermediates is
proposed, see:
<A NAME="RD14511ST-16A">16a </A>
Broeckx W.
Overbergh N.
Samyn C.
Smets G.
L’abbé G.
Tetrahedron
1971,
27:
3527
<A NAME="RD14511ST-16B">16b </A>
Feldman KS.
Iyer MR.
Hester DK.
Org. Lett.
2006,
8:
3116
<A NAME="RD14511ST-16C">16c </A>
Feldman KS.
Iyer MR.
J.
Am. Chem. Soc.
2005,
127:
4590