Up-to-date health care implies users’ autonomous decision-making on diagnostic and therapeutic measures (informed consent). Patients depend on comprehensible information material to be able to understand an intervention and its consequences. However, studies on literacy and health literacy imply that many patients are not able to read more than short words and sentences. Many patients have difficulties in reading and completing medical forms. The issue of this investigation was to assess the readability of information material in obstetrics and to identify useful readability assessment tools.

Informed consent sheets on cesarean section, other obstetrical measures, and anesthesia methods were assessed for readability using tools including the G-SMOG (German Simple Measurement of Gobbledygook), Flesch Index, Amstad Formula, and LIX (Lesbarkeitsindex). In addition, comparative material on the same topics, e.g., from the Internet, was assessed. Twenty-one texts were included. The assessments were carried out manually and by using online tools. In some cases, the results of the online tools differed substantially from those of the manual calculations.

Overall, the assessment tools developed for the German language proved to be useful for readability screening.

Evidence-based patient information has to be not only objective, comprehensive, and free of distortion but also readable and understandable. Most texts in this investigation were found to be difficult or very difficult to read. Especially the included informed consent sheets were assessed as clearly above the recommended readability level. Persons conducting informed consent discussions have to ensure that the patient not only signs the form but sufficiently understands the intervention in question.

The Internet is the most common source of information concerning health. Many patients rely on information taken from the Internet without consulting other sources. So the readability of patient information on the Internet is crucial. About one-third of the investigated texts from the Internet were assessed as difficult or very difficult to read. Texts published by the IQWiG were found to be fairly readable. One can conclude that scientific content can be presented in a readable fashion.

Efforts need to be made to prepare readable and comprehensible information material, e.g., by using the “Hamburg Model of Comprehensibility” or the rules of plain language. The “Hamburg Model of Comprehensibility” suggests simplicity, structuring, brevity/conciseness, and stimulating add-ons as means to make a text more readable. The rules of plain language include the avoidance of difficult grammar like passive constructions and subjunctives. Furthermore, typography and layout can be useful to make a text more readable. Indispensable basic information can be complemented by information of different readability adjusted to the patient’s needs.

Limitations: The sample of this investigation was small and the content quality of the included texts was not assessed.