Supporting Information

Organocatalyzed [2 + 2] cycloaddition reaction between quinone imine ketals with allenoates

Teng Liu,†* Chixian He,† Fan Wang,† Xiang Shen,† Yongqin Li,† Man Lang,† Guijun Li,† Chao Huang,‡* Feixiang Cheng†*

†Center for Yunnan Guizhou Plateau Chemical Functional Materials and Pollution Control, College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655011, P. R. China.
‡School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, P. R. China.
Table 1. Optimization of the reaction conditionsa

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Solvent</th>
<th>3a (%)</th>
<th>4 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HOAc</td>
<td>1,4-Dioxane</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>2</td>
<td>PhCO₂H</td>
<td>1,4-Dioxane</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>3</td>
<td>4-NO₂-C₆H₄CO₂H</td>
<td>1,4-Dioxane</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>4</td>
<td>4-CH₃O-C₆H₄CO₂H</td>
<td>1,4-Dioxane</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>5</td>
<td>p-TSA</td>
<td>1,4-Dioxane</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>6</td>
<td>CF₃CO₂H</td>
<td>1,4-Dioxane</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>7</td>
<td>CH₃CO₂H</td>
<td>1,4-Dioxane</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>8</td>
<td>PPh₃</td>
<td>1,4-Dioxane</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>9</td>
<td>Et₃N</td>
<td>1,4-Dioxane</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>10</td>
<td>t-BuOK</td>
<td>1,4-Dioxane</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>11</td>
<td>TMG</td>
<td>1,4-Dioxane</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>12</td>
<td>DMAP</td>
<td>1,4-Dioxane</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>13</td>
<td>DBU</td>
<td>1,4-Dioxane</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>14</td>
<td>Cu(OTf)₂</td>
<td>1,4-Dioxane</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>15</td>
<td>In(OTf)₂</td>
<td>1,4-Dioxane</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>16</td>
<td>AgOTf</td>
<td>1,4-Dioxane</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>17</td>
<td>Fe(OTf)₂</td>
<td>1,4-Dioxane</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>18</td>
<td>Zn(OTf)₂</td>
<td>1,4-Dioxane</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>19</td>
<td>CuCl₂</td>
<td>1,4-Dioxane</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>20</td>
<td>Cu(OAc)₂</td>
<td>1,4-Dioxane</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>21</td>
<td>Ni(OAc)₂</td>
<td>1,4-Dioxane</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>22</td>
<td>Zn(OAc)₂</td>
<td>1,4-Dioxane</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>23</td>
<td>−</td>
<td>1,4-Dioxane</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

a The reaction was performed with 1a (0.11 mmol), 2a (0.1 mmol) and catalyst (10 mol\%) in the solvent (1.5 mL).
Copies of 1H, 13C, and 19F spectra of 2, 3, 5, 6, 7

Figure S1. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 3a

Figure S2. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 3a
Figure S3. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 3b

Figure S4. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 3b
Figure S5. 1H NMR (400 MHz, CDCl₃) spectra of compound 3c

Figure S6. 13C NMR (100 MHz, CDCl₃) spectra of compound 3c
Figure S7. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 3d

Figure S8. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 3d
Figure S9. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 3e

Figure S10. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 3e
Figure S11. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 3f

Figure S12. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 3f
Figure S13. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 3g

Figure S14. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 3g
Figure S15. 19F NMR (376 MHz, CDCl$_3$) spectra of compound 3g

Figure S16. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 3h
Figure S17. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 3h

Figure S18. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 3i
Figure S19. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 3i

Figure S20. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 3j
Figure S21. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 3j

Figure S22. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 3k
Figure S23. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 3k

Figure S24. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 3l
Figure S25. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 3l

Figure S26. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 3m
Figure S27. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 3m

Figure S28. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 3n
Figure S29. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 3n

Figure S30. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 3o
Figure S31. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 3o

Figure S32. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 3p
Figure S33. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 3p

Figure S34. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 3q
Figure S35. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 3r

Figure S36. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 3r
Figure S37. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 3s

Figure S38. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 3s
Figure S39. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 3t

Figure S40. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 3t
Figure S41. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 5

Figure S42. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 5
Figure S43. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 6a

Figure S44. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 6a
Figure S45. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 6b

Figure S46. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 6b
Figure S47. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 6c

Figure S48. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 6c
Figure S49. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 6d

Figure S50. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 6d
Figure S51. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 6e

Figure S52. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 6e
Figure S53. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 6f

Figure S54. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 6f
Figure S55. 19F NMR (376 MHz, CDCl$_3$) spectra of compound 6f

Figure S56. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 6g
Figure S57. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 6g

Figure S58. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 6h
Figure S59. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 6h

Figure S60. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 6i
Figure S61. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 6i

Figure S62. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 6j
Figure S63. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 6j

Figure S64. 19F NMR (376 MHz, CDCl$_3$) spectra of compound 6j
Figure S65. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 6k

Figure S66. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 6k
Figure S67. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 61

Figure S68. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 61
Figure S69. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 2m

Figure S70. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 2m
Figure S71. 1H NMR (400 MHz, CDCl$_3$) spectra of compound 2n

Figure S72. 13C NMR (100 MHz, CDCl$_3$) spectra of compound 2n
Figure S73. HRMs spectra of compound 3a