Supporting Information

Application of Benzofuran-Derived Azadienes as Two-Carbon Building Blocks in Annulations: Chemo- and Diastereoselective Construction of Spiro-Benzofuran Scaffolds

Ye-Xin Wang, Yi-Nan Lu, Lin-Lin Xu, Feng-Tao Sheng, Jin-Peng Zhang*, Wei Tan* and Feng Shi*

a School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
b Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou 221006, China
E-mail: fshi@jsnu.edu.cn; wtan@jsnu.edu.cn; xiaopangpeng@126.com

Contents:

1. Copies of NMR spectra of products 3 (S2-S17)

2. X-ray single crystal data for compound 3aa (S18-S19)
1. Copies of NMR spectra of products 3

\(^1\)H NMR (400 MHz, CDCl\(_3\)) of compound 3aa

\[^{13}\]C NMR (100 MHz, CDCl\(_3\)) of compound 3aa
1H NMR (400 MHz, CDCl$_3$) of compound 3ba

13C NMR (100 MHz, CDCl$_3$) of compound 3ba
1H NMR (400 MHz, CDCl$_3$) of compound 3ca

13C NMR (100 MHz, CDCl$_3$) of compound 3ca
1H NMR (400 MHz, CDCl$_3$) of compound 3da: inseparable diastereomers with 90:10 dr

13C NMR (100 MHz, CDCl$_3$) of compound 3da: inseparable diastereomers with 90:10 dr
1H NMR (400 MHz, CDCl$_3$) of compound 3ea

13C NMR (100 MHz, CDCl$_3$) of compound 3ea
1H NMR (400 MHz, CDCl$_3$) of compound 3fa: inseparable diastereomers with 90:10 dr

13C NMR (100 MHz, CDCl$_3$) of compound 3fa: inseparable diastereomers with 90:10 dr
1H NMR (400 MHz, CDCl$_3$) of compound 3ga

13C NMR (100 MHz, CDCl$_3$) of compound 3ga
1H NMR (400 MHz, CDCl$_3$) of compound 3ab

13C NMR (100 MHz, CDCl$_3$) of compound 3ab
1H NMR (400 MHz, CDCl$_3$) of compound 3ac

13C NMR (100 MHz, CDCl$_3$) of compound 3ac
1H NMR (400 MHz, CDCl$_3$) of compound 3ad

13C NMR (100 MHz, CDCl$_3$) of compound 3ad
1H NMR (400 MHz, CDCl$_3$) of compound 3ae

13C NMR (100 MHz, CDCl$_3$) of compound 3ae
1H NMR (400 MHz, CDCl$_3$) of compound 3af

13C NMR (100 MHz, CDCl$_3$) of compound 3af
1H NMR (400 MHz, CDCl₃) of compound 3cd

13C NMR (100 MHz, CDCl₃) of compound 3cd
1H NMR (400 MHz, CDCl$_3$) of compound 3db: inseparable diastereomers with 85:15 dr

13C NMR (100 MHz, CDCl$_3$) of compound 3db: inseparable diastereomers with 85:15 dr
1H NMR (400 MHz, CDCl$_3$) of compound 3dc

[Chemical structure and spectra image]

13C NMR (100 MHz, CDCl$_3$) of compound 3dc

[Chemical structure and spectra image]
1H NMR (400 MHz, CDCl$_3$) of compound 3dd

13C NMR (100 MHz, CDCl$_3$) of compound 3dd
2. X-ray single crystal data for compound 3aa

![Chemical structure of compound 3aa]

The X-ray source used for the single crystal X-ray diffraction analysis of compound 3aa was MoKα (λ = 0.71073), and the thermal ellipsoid was drawn at the 30% probability level.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>sf20180424-01</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C43 H44 N O5 S</td>
</tr>
<tr>
<td>Formula weight</td>
<td>686.85</td>
</tr>
<tr>
<td>Temperature</td>
<td>296.15 K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
</tbody>
</table>
Crystal system Triclinic
Space group P-1
Unit cell dimensions
\[a = 11.729(3) \text{ Å} \quad \alpha = 68.946(2)^\circ.\]
\[b = 11.733(3) \text{ Å} \quad \beta = 88.229(3)^\circ.\]
\[c = 15.130(3) \text{ Å} \quad \gamma = 70.982(3)^\circ.\]
Volume 1828.4(7) Å³
Z 2
Density (calculated) 1.248 Mg/m³
Absorption coefficient 0.135 mm⁻¹
F(000) 730
Crystal size 0.6 x 0.3 x 0.1 mm³
Theta range for data collection 2.232 to 27.103°.
Index ranges -15<=h<=13, -14<=k<=9, -19<=l<=16
Reflections collected 10837
Independent reflections 7795 [R(int) = 0.0220]
Completeness to theta = 25.242° 98.4 %
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.7456 and 0.6654
Refinement method Full-matrix least-squares on F²
Data / restraints / parameters 7795 / 0 / 462
Goodness-of-fit on F² 1.002
Final R indices [I>2sigma(I)] R1 = 0.0552, wR2 = 0.1389
R indices (all data) R1 = 0.0873, wR2 = 0.1611
Extinction coefficient n/a
Largest diff. peak and hole 0.262 and -0.490 e.Å⁻³