Supporting Information
for DOI: 10.1055/s-0037-1611836
© Georg Thieme Verlag KG Stuttgart · New York 2019
Supporting Information

Synthesis of N-pyridyl hydroxylamines via copper-catalyzed cross-coupling

Carilyn Torruellas*, Fu-Lian Hsu and Andrew J. Walz.

CCDC Chemical Biological Center, 8198 Blackhawk Rd., Aberdeen Proving Ground, MD 21010, United States.

https://www.ecbc.army.mil/

Contents

General ... 5

General Procedure A: Acetylation. .. 5

\(N\)-(allyloxy)acetamide 2k ... 6

\(N\)-((tert-butyldimethylsilyl)oxy)acetamide 2o ... 6

\(N\)-(2-(trimethylsilyl)ethoxy)acetamide 2q ... 7

General Procedure B: Carbamate preparation .. 7

2-(trimethylsilyl)ethyl (allyloxy)carbamate 2m .. 8

tert-butyl ((tetrahydro-2H-pyran-2-yl)oxy)carbamate 2h .. 8

tert-butyl (allyloxy)carbamate 2l ... 9

Benzyl ((tetrahydro-2H-pyran-2-yl)oxy)carbamate 2j ... 9

\(N\)-(benzyloxy)methanesulfonamide 2e ... 10

\(N,N'\)-(pyridine-2,6-diyl)bis(\(N\)-(benzyloxy)acetamide) 3y ... 11

\(N,N'\)-(pyridine-2,6-diyl)bis(\(N\)-((tetrahydro-2H-pyran-2-yl)oxy)acetamide) 3z 12

di-tert-butyl pyridine-2,6-diylbis(((tetrahydro-2H-pyran-2-yl)oxy)carbamate) 3aa 12

NMR Data ... 13

\(^1\)H NMR (400 MHz, CDCl\(_3\)) of \(N\)-(allyloxy)acetamide 2k ... 13

\(^{13}\)C NMR (400 MHz, CDCl\(_3\)) of \(N\)-(allyloxy)acetamide 2k ... 14

\(^1\)H NMR (400 MHz, CD\(_2\)OD) of \(N\)-((tert-butyldimethylsilyl)oxy)acetamide 2o 15

\(^{13}\)C NMR (400 MHz, CD\(_2\)OD) of \(N\)-((tert-butyldimethylsilyl)oxy)acetamide 2o 16

\(^1\)H NMR (400 MHz, CDCl\(_3\)) of \(N\)-(2-(trimethylsilyl)ethoxy)acetamide 2q 17

\(^{13}\)C NMR (400 MHz, CDCl\(_3\)) of \(N\)-(2-(trimethylsilyl)ethoxy)acetamide 2q 18

\(^1\)H NMR (400 MHz, CDCl\(_3\)) of 2-(trimethylsilyl)ethyl (allyloxy)carbamate 2m 19

\(^{13}\)C NMR (400 MHz, CDCl\(_3\)) of 2-(trimethylsilyl)ethyl (allyloxy)carbamate 2m 20
1H NMR (400 MHz, CDCl$_3$) of tert-butyl ((tetrahydro-2H-pyran-2-yl)oxy)carbamate 2h

13C NMR (400 MHz, CDCl$_3$) (400 MHz, CDCl$_3$) of tert-butyl ((tetrahydro-2H-pyran-2-yl)oxy)carbamate 2h

1H NMR (400 MHz, CDCl$_3$) of N-(benzyloxy)methanesulfonamide 2e

13C NMR (400 MHz, CDCl$_3$) of N-(benzyloxy)methanesulfonamide 2e

1H NMR (400 MHz, CD$_3$OD) of N-(benzyloxy)-N-(pyridin-2-yl)acetamide 3a

13C NMR (400 MHz, CD$_3$OD) of N-(benzyloxy)-N-(pyridin-2-yl)acetamide 3a

1H NMR (400 MHz, CDCl$_3$) of tert-butyl (benzyloxy)(pyridin-2-yl)carbamate 3b

13C NMR (400 MHz, CDCl$_3$) of tert-butyl (benzyloxy)(pyridin-2-yl)carbamate 3b

1H NMR (400 MHz, CDCl$_3$) of 2-(trimethylsilyl)ethyl (benzyloxy)(pyridin-2-yl)carbamate 3c

13C NMR (400 MHz, CDCl$_3$) of 2-(trimethylsilyl)ethyl (benzyloxy)(pyridin-2-yl)carbamate 3c

1H NMR (400 MHz, CDCl$_3$) of N-(benzyloxy)-4-methyl-N-(pyridin-2-yl)benzenesulfonamide 3d

13C NMR (400 MHz, CDCl$_3$) of N-(benzyloxy)-4-methyl-N-(pyridin-2-yl)benzenesulfonamide 3d

1H NMR (400 MHz, CDCl$_3$) of N-(benzyloxy)-4-methyl-N-(pyridin-2-yl)methanesulfonamide 3d

13C NMR (400 MHz, CDCl$_3$) of N-(benzyloxy)-N-(pyridin-2-yl)methanesulfonamide 3e

1H NMR (400 MHz, CDCl$_3$) of N-(pyridin-2-yl)-N-((tetrahydro-2H-pyran-2-yl)oxy)acetamide 3g

13C NMR (400 MHz, CDCl$_3$) of N-(pyridin-2-yl)-N-((tetrahydro-2H-pyran-2-yl)oxy)acetamide 3g

1H NMR (400 MHz, CDCl$_3$) of tert-butyl pyridin-2-yl((tetrahydro-2H-pyran-2-yl)oxy)carbamate 3h

13C NMR (400 MHz, CDCl$_3$) of tert-butyl pyridin-2-yl((tetrahydro-2H-pyran-2-yl)oxy)carbamate 3h

1H NMR (400 MHz, CDCl$_3$) of 2-(trimethylsilyl)ethyl pyridin-2-yl((tetrahydro-2H-pyran-2-yl)oxy)carbamate carbamate 3i

13C NMR (400 MHz, CDCl$_3$) of 2-(trimethylsilyl)ethyl pyridin-2-yl((tetrahydro-2H-pyran-2-yl)oxy)carbamate carbamate 3i

1H NMR (400 MHz, CDCl$_3$) of Benzyl pyridin-2-yl((tetrahydro-2H-pyran-2-yl)oxy)carbamate 3j

13C NMR (400 MHz, CDCl$_3$) of Benzyl pyridin-2-yl((tetrahydro-2H-pyran-2-yl)oxy)carbamate 3j

1H NMR (400 MHz, CDCl$_3$) of N-(allyloxy)-N-(pyridin-2-yl)acetamide 3k

13C NMR (400 MHz, CDCl$_3$) of N-(allyloxy)-N-(pyridin-2-yl)acetamide 3k

1H NMR (400 MHz, CDCl$_3$) of tert-butyl (allyloxy)(pyridin-2-yl)carbamate 3l

13C NMR (400 MHz, CDCl$_3$) of tert-butyl (allyloxy)(pyridin-2-yl)carbamate 3l

1H NMR (400 MHz, CDCl$_3$) of 2-(trimethylsilyl)ethyl (allyloxy)(pyridin-2-yl)carbamate 3m

Approved for Public Release: Distribution Unlimited.
13C NMR (400 MHz, CDCl$_3$) of 2-(trimethylsilyl)ethyl (allyloxy)(pyridin-2-yl)carbamate 3m .. 49

1H NMR (400 MHz, CDCl$_3$) of Benzyl (allyloxy)(pyridin-2-yl)carbamate 3n ... 50

13C NMR (400 MHz, CDCl$_3$) of Benzyl (allyloxy)(pyridin-2-yl)carbamate 3n ... 51

1H NMR (400 MHz, CDCl$_3$) of N-(pyridin-2-yl)-N-(2-(trimethylsilyl)ethoxy)acetamide 3q ... 52

13C NMR (400 MHz, CDCl$_3$) of N-(pyridin-2-yl)-N-(2-(trimethylsilyl)ethoxy)acetamide 3q ... 53

1H NMR (400 MHz, CDCl$_3$) of N-(benzylxoy)-N-(6-iodopyridin-2-yl)acetamide 3r ... 54

13C NMR (400 MHz, CDCl$_3$) of N-(benzylxoy)-N-(6-iodopyridin-2-yl)acetamide 3r ... 55

1H NMR (400 MHz, CDCl$_3$) of tert-butyl (benzylxoy)(6-iodopyridin-2-yl)carbamate 3s ... 56

13C NMR (400 MHz, CDCl$_3$) of tert-butyl (benzylxoy)(6-iodopyridin-2-yl)carbamate 3s ... 57

1H NMR (400 MHz, CDCl$_3$) of di-tert-butyl pyridine-2,6-diylbis((benzylxoy)carbamate) 3s2 .. 58

13C NMR (400 MHz, CDCl$_3$) of di-tert-butyl pyridine-2,6-diylbis((benzylxoy)carbamate) 3s2 .. 59

1H NMR (400 MHz, CDCl$_3$) of N-(6-iodopyridin-2-yl)-N-((tetrahydro-2H-pyran-2-yl)oxy)acetamide 3u ... 60

13C NMR (400 MHz, CDCl$_3$) of N-(6-iodopyridin-2-yl)-N-((tetrahydro-2H-pyran-2-yl)oxy)acetamide 3u ... 61

1H NMR (400 MHz, CDCl$_3$) of (Z)-1-methylpyridin-2(1H)-one O-benzyl oxime 3v ... 62

13C NMR (400 MHz, CDCl$_3$) of (Z)-1-methylpyridin-2(1H)-one O-benzyl oxime 3v ... 63

1H NMR (400 MHz, CDCl$_3$) of (Z)-1-methylpyridin-2(1H)-one O-tetrahydro-2H-pyran-2-yl oxime 3w ... 64

13C NMR (400 MHz, CDCl$_3$) of (Z)-1-methylpyridin-2(1H)-one O-tetrahydro-2H-pyran-2-yl oxime 3w ... 65

1H NMR (400 MHz, CDCl$_3$) of N-(pyrimidin-2-yl)-N-((tetrahydro-2H-pyran-2-yl)ox)acetamide 3x ... 66

13C NMR (400 MHz, CDCl$_3$) of N-(pyrimidin-2-yl)-N-((tetrahydro-2H-pyran-2-yl)ox)acetamide 3x ... 67

1H NMR (400 MHz, CDCl$_3$) of N,N'-(pyridine-2,6-diyl)bis(N-(benzylxoy)acetamide) 3y ... 68

13C NMR (400 MHz, CDCl$_3$) of N,N'-(pyridine-2,6-diyl)bis(N-(benzylxoy)acetamide) 3y ... 69

1H NMR (400 MHz, CDCl$_3$) of N,N'-(pyridine-2,6-diyl)bis(N-((tetrahydro-2H-pyran-2-yl)oxy)acetamide) 3z ... 70

13C NMR (400 MHz, CDCl$_3$) of N,N'-(pyridine-2,6-diyl)bis(N-((tetrahydro-2H-pyran-2-yl)oxy)acetamide) 3z ... 71

1H NMR (400 MHz, CDCl$_3$) of di-tert-butyl pyridine-2,6-diylbis(((tetrahydro-2H-pyran-2-yl)oxy)carbamate) 3aa ... 72
13C NMR (400 MHz, CDCl$_3$) of di-tert-butyl pyridine-2,6-diylbis(((tetrahydro-2H-pyran-2-yl)oxy)carbamate) 3aa ... 73
General

Starting materials, reagents and solvents were purchased from commercial sources and used without further purification. All non-aqueous reactions were carried out under dry conditions using oven dried glassware and an inert atmosphere of Argon, unless otherwise indicated. When indicated, solvents and reagents were degassed by bubbling Argon through the liquids for 1 h. Flash chromatography was performed using Reveleris X2 system (Büchi Labortechnik AG; Flawil, Switzerland). Melting points were recorded on a Thomas Hoover capillary melting point apparatus (Philadelphia, PA) and reported uncorrected. 1H and 13C NMR spectra were recorded with a 400 MHz JEOL NMR spectrometer (JEOL USA, Inc.; Peabody, MA). IR spectra was recorded using a Perking Elmer FT-IR spectrometer (Boston, MA). High resolution mass spectroscopy (HRMS) was measured using a ThermoFinnigan Q-Exactive instrument (Thermo Fisher Scientific; Waltham, MA) with electron spray ionization (ESI) and gas chromatography mass spectrometer chemical ionization time of flight (CI/TOF, Agilent Technologies; Santa Clara, CA).

General Procedure A: Acetylation.1

To a solution of O-protected hydroxylamine (18.25 mmol) in anhydrous CH$_2$Cl$_2$ (91 mL), Et$_3$N (5.6 mL, 40.15 mmol) and 4-dimethylaminopyridine (222 mg, 1.82 mmol) were added at 0 °C. Ac$_2$O (1.90 mL, 20.07 mmol) was added drop-wise through an addition funnel. The mixture was warmed to room temperature and stirred overnight. The mixture was washed with NaHCO$_3$, 1 M HCl, H$_2$O and brine. The organic layer was dried over MgSO$_4$, filtered and concentrated under reduced pressure. The crude product was purified by chromatography.

N-(Allyloxy)acetamide 2k. Compound **2k** was synthesized following general procedure A, using *O*-allylhydroxylamine hydrochloride (2.00 g, 18.25 mmol). Compound **2k** was extracted from the aqueous layer using EtOAc, the organic layer was dried over Na₂SO₄, filtered and concentrated under reduced pressure to yield **2k**. The compound was used without further purification.

Colourless oil; yield: 1.41 g (67%).

IR (neat): 3184, 2967, 1659, 1370, 1078, 992, 927, 729 cm⁻¹.

¹H NMR (CDCl₃, 400 MHz): δ = 5.87 – 5.83 (m, 1H), 5.24 – 5.15 (m, 2H), 4.27 (d, *J* = 6.4 Hz, 2H), 1.82 (s, 3H).

¹³C NMR (CDCl₃, 400 MHz): δ = 168.4, 132.3, 120.1, 77.6, 19.8.

N-((Tert-butyldimethylsilyl)oxy)acetamide 2o. Compound **2o** was synthesized following general procedure A, using *O-*(tert-butyldimethylsilyl)hydroxylamine (500 mg, 3.39 mmol). The crude product was purified by chromatography (SiO₂, 50 – 100% CH₂Cl₂: Hexanes followed by 0 – 20% EtOAc:CH₂Cl₂ gradient) to afford **2o**.

White solid; yield: 250 mg (39%).

IR (neat): 3157, 2934, 2863, 2304, 1654, 1465, 1390, 1252, 1088, 1040, 984, 829, 785 cm⁻¹.

¹H NMR (CD₃OD, 400 MHz): δ = 1.86 (s, 3H), 0.97 (s, 9H), 0.17 (s, 6H).

¹³C NMR (CD₃OD, 400 MHz): δ = 168.8 (d), 24.9, 18.0, 17.9, −6.8.

HRMS (Cl/TOF): *m/z* [M + H]⁺ calcd for C₈H₂₀NO₂Si : 190.1258; found: 190.1260.
N-(2-(Trimethylsilyl)ethoxy)acetamide 2q. Compound 2q was synthesized following general procedure A, using O-(2-(trimethylsilyl)ethyl)hydroxylamine (1.00 g, 5.89 mmol). The crude product was purified by chromatography (SiO$_2$, 0 – 20% EtOAc: CH$_2$Cl$_2$ gradient) to afford 2q. Colourless oil; yield: 1.01 g (98%).

IR (neat): 3191, 2951, 2854, 2364, 2109, 1655, 1372, 1250, 1080, 988, 833 cm$^{-1}$.

1H NMR (CDCl$_3$, 400 MHz): $\delta = 9.21, 8.64$ (rotamers, br, 1H), 3.94 – 3.89 (m, 2H), 2.07, 1.88 (rotamers, s, 3H), 1.01 – 0.97 (m, 2H), −0.02 (s, 9H).

13C NMR (CDCl$_3$, 400 MHz): $\delta = 168.1, 74.1, 19.9, 16.7, -1.4$.

HRMS (CI/TOF): m/z [M + H]$^+$ calcd for C$_7$H$_{18}$NO$_2$Si: 176.1101; found: 176.1104.

General Procedure B: Carbamate preparation

To a solution of the alcohol (6.39 mmol) in anhydrous benzene (6.8 mL), carbamylidimidazole (CDI, 80%, 1.30 g, 6.39 mmol) was added. The mixture was stirred at room temperature for 2 h. A solution of O-protected hydroxylamine (6.39 mmol) in anhydrous benzene (1.5 mL) was added and the mixture was stirred for 16 h. The mixture was diluted with benzene and washed with brine. The organic layer was dried over MgSO$_4$, filtered and concentrated under reduced pressure. The crude residue was purified by chromatography using a gradient of 50 – 100% CH$_2$Cl$_2$:Hexanes followed by 0 – 20% EtOAc: CH$_2$Cl$_2$ to yield the product.

2-(Trimethylsilyl)ethyl (allyloxy)carbamate 2m. Compound 2m was synthesized following general procedure B, using O-allylhydroxylamine hydrochloride (700 mg, 6.39 mmol) and 2-(trimethylsilyl)ethan-1-ol (0.91 mL, 6.39 mmol).

Yellow oil; yield: 1.36 g (97%).

IR (neat): 3255, 2955, 1720, 1458, 1249, 1106, 1061, 858, 835, 698 cm⁻¹.

1H NMR (CDCl$_3$, 400 MHz): δ = 7.50 (br, 1H), 5.93 – 5.88 (m, 1H), 5.31 – 5.26 (m, 2 H), 4.31 (d, J = 6.0 Hz, 2H), 4.25 – 4.21 (m, 2H), 1.01 – 0.96 (m, 2H), 0.00 (s, 9H).

13C NMR (CDCl$_3$, 400 MHz): δ = 157.9, 132.4, 120.2, 77.6, 64.4, 17.7, -1.4.

HRMS (Cl/TOF): m/z [M + H]$^+$ calcd for C$_9$H$_{20}$NO$_3$Si: 218.1207; found: 218.1203.

![Structure 2m]

Tert-butyl ((tetrahydro-2H-pyran-2-yl)oxy)carbamate 2h. Compound 2h was synthesized following general procedure B, using O-(tetrahydro-2H-pyran-2-yl)hydroxylamine (2.00 g, 17.08 mmol) and tBuOH (1.26 g, 17.08 mmol). The crude product was purified by chromatography (SiO$_2$, 0 – 20% EtOAc: CH$_2$Cl$_2$ gradient) to afford 2h.

Colourless oil; yield: 1.18 g (32%).

IR (neat): 3274, 2944, 1720, 1462, 1368, 1248, 1164, 1101, 1037 cm⁻¹.

1H NMR (CDCl$_3$, 400 MHz): δ = 7.58 (br, 1H), 4.89 (br, 1H), 3.92 – 3.89 (m, 1H), 3.60 – 3.57 (m, 1H), 1.75 (m, 3H), 1.57 – 1.54 (m, 3H), 1.45 (s, 9H).

13C NMR (CDCl$_3$, 400 MHz): δ = 156.5, 102.4, 81.7, 62.6, 28.2, 25.1, 18.9.

HRMS (ESI): m/z [M+H]$^+$ calcd for C$_{10}$H$_{20}$NO$_4$: 218.1387; found: 218.1385.

![Structure 2h]
Tert-butyl (allyloxy)carbamate 2l. Compound 2l was synthesized following general procedure B, using O-allylhydroxylamine hydrochloride (2.00 g, 18.25 mmol) and tBuOH (1.35 g, 18.25 mmol). The crude product was purified by chromatography (SiO₂, 0 – 20% EtOAc: CH₂Cl₂ gradient) to afford 2l.

White solid; Yield: 266 mg (7%).

¹H NMR (400 MHz; CDCl₃): δ = 7.36 (br, 1H), 5.95 – 5.53 (m, 1H), 5.29 – 5.20 (m, 2H), 4.28 (d, J = 6.4 Hz, 2H), 1.42 (s, 9H).

¹³C NMR (400 MHz; CDCl₃): δ 156.9, 132.6, 119.8, 81.6, 77.4, 28.2.

Analytical data is in agreement to the reported in literature.³

Benzyl ((tetrahydro-2H-pyran-2-yl)oxy)carbamate 2j. Compound 2j was synthesized following general procedure B, using O-(tetrahydro-2H-pyran-2-yl)hydroxylamine (2.00 g, 17.08 mmol) and BnOH (1.77 mL, 17.08 mmol). The crude product was purified by chromatography (SiO₂, 0 – 20% EtOAc: CH₂Cl₂ gradient) to afford 2j.

White solid; Yield: 3.08 g (72%); mp 55 – 56 °C.

¹H NMR (400 MHz; CDCl₃): δ = 7.82 (s, 1H), 7.35 – 7.28 (m, 5H), 5.15 (m, 2H), 4.92 (m, 1H), 3.94 – 3.89 (m, 1H), 3.60 – 3.57 (m, 1H), 1.75 (m, 3H), 1.60 – 1.53 (m, 3H).

¹³C NMR (400 MHz; CDCl₃): δ = 157.1, 135.7, 128.7, 128.5, 128.4, 102.7, 67.6, 62.6, 28.2, 25.8, 18.8.

Analytical data is in agreement to the reported in literature.⁴

N-(Benzyloxy)methanesulfonamide 2e. To a solution of O-benzyl hydroxylamine (2.00 g, 16.19 mmol), in THF (32 mL), MsCl (1.25 mL, 16.19 mmol) was added. The mixture was stirred at room temperature for 20 h. The mixture was diluted in Et₂O and washed with NaHCO₃ saturated aqueous solution. The organic layer was dried over MgSO₄, filtered and concentrated under reduced pressure. The crude residue was purified by chromatography using a gradient of 0 – 20% EtOAc: CH₂Cl₂ to afford the product.
Crystalline solid; yield: 2.28 g (70%); mp 93 – 95 °C.
IR (neat): 3217, 3023, 2896, 1675, 1473, 1458, 1368, 1319, 1155, 1027, 968, 837, 780, 755, 702, 681, 605, 522, 500, 458 cm⁻¹.
¹H NMR (CDCl₃, 400 MHz): δ = 7.40 – 7.38 (m, 5H), 7.12 (s, 1H), 4.98 (s, 2H), 3.00 (s, 3H).
¹³C NMR (CDCl₃, 400 MHz): δ = 135.2, 129.6, 129.0, 128.7, 79.6, 36.9.

Table 1: Copper-catalyzed coupling of 2,6-diiodopyridine with 2 equiv. of hydroxylamine
N,N'-:(Pyridine-2,6-diyl)bis(N-benzzyloxy)acetamide) 3y. Following the general procedure for copper catalyzed coupling, using 2,6-diiodopyridine (200 mg, 0.600 mmol), N-(benzzyloxy)acetamide (200 mg, 1.21 mmol), CuO (17 mg, 0.121 mmol), DMEDA (26 µL, 0.242 mmol) and K2CO3 (334 mg, 2.42 mmol), compound 3y was obtained with 3r as byproduct. The reaction proceeded with an 81% conversion. The crude product was purified by chromatography (SiO2, 50 – 100% Hexanes:CH2Cl2 then 0 – 10% EtOAc:CH2Cl2 gradient) to afford 3y. Yellow oil; yield: 56 mg (23%).

IR (neat): 3082, 3002, 1686, 1585, 1464, 1431, 1367, 1282, 1151, 778, 584 cm⁻¹.

1H NMR (CDCl3, 400 MHz): δ = 7.78 (t, J = 8.2 Hz, 1H), 7.56 (d, J = 7.8 Hz, 2H), 7.41 – 7.39 (m, 4H), 7.34 – 7.32 (m, 6H), 5.03 (s, 4H), 2.31 (s, 6H).

13C NMR (CDCl3, 400 MHz): δ = 170.8, 150.4, 140.0, 134.3, 129.7, 129.1, 128.7, 114.7, 77.8, 23.0.

N,N’-(Pyridine-2,6-diyl)bis(N-((tetrahydro-2H-pyran-2-yl)oxy)acetamide) 3z. Following the general procedure for copper catalyzed coupling, using 2,6-diiodopyridine (426 mg, 1.29 mmol), N-((tetrahydro-2H-pyran-2-yl)oxy)acetamide (412 mg, 2.57 mmol), Cu₂O (37 mg, 2.57 mmol), DMEDA (55 µL, 0.514 mmol) and K₂CO₃ (710 mg, 5.14 mmol), compound 3z was obtained with 3u as byproduct. The crude product was purified by chromatography (SiO₂, 0 – 10% Acetone:Hexanes:CH₂Cl₂ gradient) to afford 3z and 3u (188 mg).

Yellow oil; yield: 108 mg (36%).

IR (neat): 2941, 2866, 1688, 1582, 1436, 1364, 1278, 1204, 1033, 897, 873, 804 cm⁻¹.

¹H NMR (CDCl₃, 400 MHz): δ = 7.77 (t, J = 7.8 Hz, 1H), 7.46 (d, J = 8.2 Hz, 2H), 5.03 (m, 2H), 3.81 – 3.79 (m, 2H), 3.39 – 3.37 (m, 2H), 2.34 (s, 6H), 1.84 – 1.80 (m, 6H), 1.54 (s, 6H).

¹³C NMR (CDCl₃, 400 MHz): δ = 171.2, 151.4, 139.6(d), 116.0(d), 104.1(d), 64.0, 28.7(d), 24.9, 23.1, 19.7(d).

Di-tert-butyl pyridine-2,6-diylbis(((tetrahydro-2H-pyran-2-yl)oxy)carbamate) 3aa. Following the general procedure for copper catalyzed coupling, using 2,6-diiodopyridine (500 mg, 1.51 mmol), tert-butyl ((tetrahydro-2H-pyran-2-yl)oxy)carbamate (659 mg, 3.03 mmol), Cu₂O (43 mg, 0.303 mmol), DMEDA (66 µL, 0.610 mmol) and K₂CO₃ (838 mg, 6.07 mmol), compound 3aa was obtained. The crude product was purified by chromatography (SiO₂, 50 – 100% Hexanes: CH₂Cl₂ followed by 0 – 20% EtOAc: CH₂Cl₂ gradient) to afford 3aa and traces of the decoupling by product.

Off-white solid; yield: 376 mg (49%); mp 113 – 116°C.

IR (neat): 2982, 2937, 1728, 1585, 1447, 1365, 1300, 1156, 1100, 1020, 964, 908, 874 cm⁻¹.

¹H NMR (CDCl₃, 400 MHz): δ = 7.66 (t, J = 7.8 Hz, 1H), 7.28 (d, J = 7.8 Hz, 2H), 5.10 (m, 2H), 3.91 – 3.87 (m, 2H), 3.40 (m, 2H), 1.92 – 1.53 (m, 12H), 1.49 (s, 18H).

¹³C NMR (CDCl₃, 400 MHz): δ = 154.0(d), 152.6(d), 138.6 (d), 116.6 (d), 102.5(d), 82.6, 62.3(d), 28.3, 25.3, 18.4(d).

NMR Data

1H NMR (400 MHz, CDCl$_3$) of N-(allyloxy)acetamide 2k
13C NMR (400 MHz, CDCl$_3$) of N-(allyloxy)acetamide 2k
1H NMR (400 MHz, CD$_3$OD) of N-((tert-butyldimethylsilyl)oxy)acetamide 2o
13C NMR (400 MHz, CD$_3$OD) of N-((tert-butyldimethylsilyl)oxy)acetamide 2o
1H NMR (400 MHz, CDCl$_3$) of N-(2-(trimethylsilyl)ethoxy)acetamide 2q
13C NMR (400 MHz, CDCl$_3$) of N-(2-(trimethylsilyl)ethoxy)acetamide 2q
1H NMR (400 MHz, CDCl$_3$) of 2-(trimethylsilyl)ethyl (allyloxy)carbamate 2m
13C NMR (400 MHz, CDCl$_3$) of 2-(trimethylsilyl)ethyl (allyloxy)carbamate 2m

\[
\text{HN-OC} \quad \text{TMS}
\]

X: parts per million / 13C
1H NMR (400 MHz, CDCl$_3$) of tert-butyl ((tetrahydro-2H-pyran-2-yl)oxy)carbamate 2h
13C NMR (400 MHz, CDCl$_3$) (400 MHz, CDCl$_3$) of tert-butyl ((tetrahydro-2H-pyran-2-yl)oxy)carbamate 2h
1H NMR (400 MHz, CDCl$_3$) of N-(benzyloxy)methanesulfonamide 2e
13C NMR (400 MHz, CDCl$_3$) of N-(benzyloxy)methanesulfonamide 2e
1H NMR (400 MHz, CD$_3$OD) of N-(benzyloxy)-N-(pyridin-2-yl)acetamide 3a
13C NMR (400 MHz, CD$_3$OD) of N-(benzyloxy)-N-(pyridin-2-yl)acetamide 3a
1H NMR (400 MHz, CDCl$_3$) of tert-butyl (benzyloxy)(pyridin-2-yl)carbamate 3b
13C NMR (400 MHz, CDCl$_3$) of tert-butyl (benzoyloxy)(pyridin-2-yl)carbamate 3b
1H NMR (400 MHz, CDCl$_3$) of 2-(trimethylsilyl)ethyl (benzyloxy)(pyridin-2-yl)carbamate 3c
13C NMR (400 MHz, CDCl$_3$) of 2-(trimethylsilyl)ethyl (benzyloxy)(pyridin-2-yl)carbamate 3c
1H NMR (400 MHz, CDCl$_3$) of N-(benzyloxy)-4-methyl-N-[(pyridin-2-yl)benzenesulfonamide 3d
1H NMR (400 MHz, CDCl$_3$) of N-(benzyloxy)-4-methyl-N-(pyridin-2-yl)benzenesulfonamide 3d
13C NMR (400 MHz, CDCl$_3$) of N-(benzyloxy)-4-methyl-N-(pyridin-2-yl)benzenesulfonamide 3d
1H NMR (400 MHz, CDCl$_3$) of N-(benzyloxy)-N-(pyridin-2-yl)methanesulfonamide 3e
13C NMR (400 MHz, CDCl$_3$) of N-(benzyloxy)-N-(pyridin-2-yl)methanesulfonamide 3e
1H NMR (400 MHz, CDCl$_3$) of N-(pyridin-2-yl)-N-((tetrahydro-2H-pyran-2-yl)oxy)acetamide 3g
13C NMR (400 MHz, CDCl$_3$) of N-(pyridin-2-yl)-N-((tetrahydro-2H-pyran-2-yl)oxy)acetamide 3g
1H NMR (400 MHz, CDCl$_3$) of tert-butyl pyridin-2-yl((tetrahydro-2H-pyran-2-yl)oxy)carbamate 3h
13C NMR (400 MHz, CDCl$_3$) of tert-butyl pyridin-2-yl((tetrahydro-2H-pyran-2-yl)oxy)carbamate 3h
1H NMR (400 MHz, CDCl$_3$) of 2-(trimethylsilyl)ethyl pyridin-2-yl((tetrahydro-2H-pyran-2-yl)oxy)carbamatecarbamate 3i
13C NMR (400 MHz, CDCl$_3$) of 2-(trimethylsilyl)ethyl pyridin-2-yl((tetrahydro-2H-pyran-2-yloxy)carbamatecarbamate 3i
1H NMR (400 MHz, CDCl$_3$) of Benzyl pyridin-2-yl((tetrahydro-2H-pyran-2-yl)oxy) carbamate 3j
13C NMR (400 MHz, CDCl$_3$) of Benzyl pyridin-2-yl((tetrahydro-2H-pyran-2-yl)oxy)carbamate 3j
1H NMR (400 MHz, CDCl$_3$) of N-(allyloxy)-N-(pyridin-2-yl)acetamide 3k
13C NMR (400 MHz, CDCl$_3$) of N-(allyloxy)-N-(pyridin-2-yl)acetamide 3k
1H NMR (400 MHz, CDCl$_3$) of tert-butyl (allyloxy)(pyridin-2-yl)carbamate 3l
13C NMR (400 MHz, CDCl$_3$) of tert-butyl (allyloxy)(pyridin-2-yl)carbamate 3l
1H NMR (400 MHz, CDCl$_3$) of 2-(trimethylsilyl)ethyl (allyloxy)(pyridin-2-yl)carbamate 3m

![NMR spectrum of 2-(trimethylsilyl)ethyl (allyloxy)(pyridin-2-yl)carbamate 3m]
13C NMR (400 MHz, CDCl$_3$) of 2-(trimethylsilyl)ethyl (allyloxy)(pyridin-2-yl)carbamate 3m
1H NMR (400 MHz, CDCl$_3$) of Benzyl (allyloxy)(pyridin-2-yl)carbamate 3n

![NMR Spectrum]

X: parts per million / 1H
13C NMR (400 MHz, CDCl$_3$) of Benzyl (allyloxy)(pyridin-2-yl)carbamate 3n
1H NMR (400 MHz, CDCl$_3$) of N-(pyridin-2-yl)-N-(2-(trimethylsilyl)ethoxy)acetamide 3q
13C NMR(400 MHz, CDCl$_3$) of N-(pyridin-2-yl)$-N$-(2-(trimethylsilyl)ethoxy)acetamide 3q
1H NMR (400 MHz, CDCl$_3$) of N-(benzyloxy)-N-(6-iodopyridin-2-yl)acetamide 3r
13C NMR (400 MHz, CDCl$_3$) of N-(benzyloxy)-N-(6-iodopyridin-2-yl)acetamide 3r
1H NMR (400 MHz, CDCl$_3$) of tert-butyl (benzyloxy)(6-iodopyridin-2-yl)carbamate 3s
13C NMR (400 MHz, CDCl$_3$) of tert-butyl (benzyloxy)(6-iodopyridin-2-yl)carbamate 3s
1H NMR (400 MHz, CDCl$_3$) of di-tert-butyl pyridine-2,6-diylbis((benzyloxy)carbamate) 3s2
13C NMR (400 MHz, CDCl$_3$) of di-tert-butyl pyridine-2,6-diylbis((benzyloxy)carbamate) 3s2
1H NMR (400 MHz, CDCl$_3$) of N-(6-iodopyridin-2-yl)-N-((tetrahydro-2H-pyran-2-yl)oxy)acetamide 3u
13C NMR (400 MHz, CDCl$_3$) of N-(6-iodopyridin-2-yl)-N-((tetrahydro-2H-pyran-2-yl)oxy)acetamide 3u
1H NMR (400 MHz, CDCl$_3$) of (Z)-1-methylpyridin-2(1H)-one O-benzyl oxime 3v
13C NMR (400 MHz, CDCl$_3$) of (Z)-1-methylpyridin-2(1H)-one O-benzyl oxime 3v
1H NMR (400 MHz, CDCl$_3$) of (Z)-1-methylpyridin-2(1H)-one O-tetrahydro-2H-pyran-2-yl oxime 3w
13C NMR (400 MHz, CDCl$_3$) of (Z)-1-methylpyridin-2(1H)-one O-tetrahydro-2H-pyran-2-yl oxime 3w
1H NMR (400 MHz, CDCl$_3$) of N-(pyrimidin-2-yl)-N-((tetrahydro-2H-pyran-2-yl)oxy)acetamide 3x
13C NMR (400 MHz, CDCl$_3$) of N-(pyrimidin-2-yl)-N-((tetrahydro-2H-pyran-2-yl)oxy)acetamide 3x
1H NMR (400 MHz, CDCl$_3$) of N,N'-(pyridine-2,6-diyl)bis(N-(benzyloxy)acetamide) 3y
13C NMR (400 MHz, CDCl$_3$) of N,N'-(pyridine-2,6-diyl)bis(N-(benzyloxy)acetamide) 3y
1H NMR (400 MHz, CDCl$_3$) of N,N'(pyridine-2,6-diyl)bis(N-((tetrahydro-2H-pyran-2-yl)oxy)acetamide) 3z
13C NMR (400 MHz, CDCl$_3$) of N,N'-(pyridine-2,6-diyl)bis(N-((tetrahydro-2H-pyran-2-yl)oxy)acetamide) 3z
1H NMR (400 MHz, CDCl\textsubscript{3}) of di-\textit{tert}-butyl pyridine-2,6-diylbis(((tetrahydro-2H-pyran-2-yl)oxy)carbamate) 3aa
13C NMR (400 MHz, CDCl$_3$) of di-tert-butyl pyridine-2,6-diylbis(((tetrahydro-2H-pyran-2-yl)oxy)carbamate) 3aa