Supporting Information

Visible-light promoted C2 trifluoromethylation of quinoline N-oxides
Ce Liang, a Wang-Tao Zhuo,a Yan-Ning Niu, b Guo-Lin Gao* a

E-mail: gaoguol@hit.edu.cn (G.-L. Gao);

a MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
b Department of Teaching and Research, Nanjing Forestry University, Huaian, 223003, China.

Content

1. Preparation and characterization of substrates .. S1
 1.1. Preparation of Togni’s reagent ... S1
 1.2. Preparation of substituted quinoline N-oxide ... S1
 1.3. Characterization of substrates ... S1
2. NMR Spectra of substrates .. S4
3. NMR Spectra of products ... S24
4. X-ray data of 2a ... S54
5. Stern-Volmer experiments ... S55
1. Preparation and characterization of substrates

1.1. Preparation of Togni’s reagent

Togni’s reagent (1-trifluoromethyl-1,2-benziodoxol-3(1H)-one) were prepared as reported in literature. And all characterization data are in accordance with the previous literature.

1.2. Preparation of substituted quinoline N-oxide

To a 100 mL round flask, 1.0 equiv. substituted quinoline, 0.25 M DCM (dichloromethane), magnetic stir bar and 1.2 equiv. m-CPBA (m-chlorobenzoperoxoic acid) were added in sequence. The reaction mixture was allowed to stir at room temperature overnight to finish the reaction. After the reaction finished (monitored by TLC), the reaction mixture was concentrated in vacuo, the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate or methanol/DCM) to give the substituted quinoline N-oxide.

1.3. Characterization of substrates

4-methylquinoline N-oxide (1a). 1H NMR (400 MHz, CDCl$_3$) δ 8.81 (d, $J = 8.7$ Hz, 1H), 8.43 (d, $J = 6.1$ Hz, 1H), 7.97 (d, $J = 8.3$ Hz, 1H), 7.77 (t, $J = 7.4$ Hz, 1H), 7.67 (t, $J = 7.2$ Hz, 1H), 7.12 (d, $J = 6.1$ Hz, 1H), 2.66 (s, 3H). 13C NMR (151 MHz, CDCl$_3$) δ 140.81, 134.85, 134.54, 129.95, 129.71, 128.36, 124.63, 121.32, 120.19, 18.24.

4-chloroquinoline N-oxide (1b). 1H NMR (400 MHz, CDCl$_3$) δ 8.76 (d, $J = 8.7$ Hz, 1H), 8.44 (d, $J = 6.5$ Hz, 1H), 8.20 (d, $J = 8.3$ Hz, 1H), 7.83 (t, $J = 7.8$ Hz, 1H), 7.75 (t, $J = 7.6$ Hz, 1H), 7.38 (d, $J = 6.5$ Hz, 1H). 13C NMR (151 MHz, CDCl$_3$) δ 141.98, 135.05, 131.08, 129.88, 129.55, 127.88, 125.06, 120.93, 120.24.

4-bromoquinoline N-oxide (1c). 1H NMR (600 MHz, CDCl$_3$) δ 8.76 (d, $J = 8.5$ Hz, 1H), 8.40 (d, $J = 6.5$ Hz, 1H), 8.17 (dd, $J = 8.5$, 1.3 Hz, 1H), 7.83 (ddd, $J = 8.5$, 6.9, 1.4 Hz, 1H), 7.76 (ddd, $J = 8.3$, 6.9, 1.3 Hz, 1H), 7.59 (d, $J = 6.5$ Hz, 1H). 13C NMR (151 MHz, CDCl$_3$) δ 142.06, 135.30, 131.23, 129.88, 129.25, 127.75, 124.51, 120.25 (2C).

4-nitroquinoline N-oxide (1d). Commercial reagents from Macklin, China.

4-methoxyquinoline N-oxide (1e). 1H NMR (600 MHz, CDCl$_3$) δ 8.62 (d, $J = 8.7$ Hz, 1H), 8.38 (d, $J = 6.7$ Hz, 1H), 8.07 (d, $J = 8.3$ Hz, 1H), 7.69 (t, $J = 7.8$ Hz, 1H), 7.52 (t, $J = 7.6$ Hz, 1H), 6.53 (d, $J = 6.8$ Hz, 1H), 3.93 (s, 3H). 13C NMR (151 MHz, CDCl$_3$) δ 154.27, 140.30, 135.90, 130.47, 127.40, 122.10, 121.94, 119.12, 99.11, 55.82.

4-cyclopropylquinoline N-oxide (1f). 1H NMR (600 MHz, CDCl$_3$) δ 8.61 (d, $J = 8.6$ Hz, 1H), 8.31 (d, $J = 5.7$ Hz, 1H), 8.14 (d, $J = 8.0$ Hz, 1H), 7.57 (t, $J = 7.5$ Hz, 1H), 7.49 (t, $J = 7.1$ Hz, 1H), 6.78 (d, $J = 5.8$ Hz, 1H), 2.11 (s, 1H), 0.98 (d, $J = 7.8$ Hz, 2H), 0.62 (d, $J = 4.7$ Hz, 2H). 13C NMR
(151 MHz, CDCl$_3$) δ 139.55, 139.45, 134.39, 129.45, 129.19, 127.54, 123.93, 119.06, 116.85, 77.21, 77.00, 76.79, 11.17, 6.86.

4-phenylquinoline N-oxide (1g). 1H NMR (600 MHz, CDCl$_3$) δ 8.74 (dd, $J = 13.7, 8.7$ Hz, 1H), 8.46 (dd, $J = 14.4, 6.4$ Hz, 1H), 7.84 (dd, $J = 15.2, 8.3$ Hz, 1H), 7.66 (dt, $J = 16.9, 8.5$ Hz, 1H), 7.51 – 7.46 (m, 1H), 7.45 – 7.35 (m, 5H), 7.14 (dd, $J = 15.8, 6.2$ Hz, 1H). 13C NMR (151 MHz, CDCl$_3$) δ 141.35, 138.54, 136.80, 134.79, 130.06, 129.41 (2C), 128.62 (2C), 128.56 (d, $J = 4.8$ Hz), 128.52, 128.47, 126.55, 121.19, 119.90.

4-(4-fluorophenyl)quinoline N-oxide (1h). 1H NMR (400 MHz, CDCl$_3$) δ 8.85 (d, $J = 8.7$ Hz, 1H), 8.58 (d, $J = 6.2$ Hz, 1H), 7.90 (d, $J = 8.4$ Hz, 1H), 7.82 – 7.77 (m, 1H), 7.65 – 7.61 (m, 1H), 7.49 – 7.46 (m, 2H), 7.26 – 7.22 (m, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 162.85 (d, $J = 248.9$ Hz), 141.46, 137.55, 134.89, 132.86 (d, $J = 3.4$ Hz), 131.28, 131.20, 130.27, 128.78, 126.67, 126.38, 121.33, 120.09, 115.94, 115.72. 19F NMR (376 MHz, CDCl$_3$) δ -112.57 (tt, $J = 8.5, 5.2$ Hz).

4-(4-chlorophenyl)quinoline N-oxide (1i). 1H NMR (600 MHz, CDCl$_3$) δ 8.84 (d, $J = 8.7$ Hz, 1H), 8.57 (d, $J = 5.9$ Hz, 1H), 7.89 (d, $J = 8.4$ Hz, 1H), 7.79 (t, $J = 7.6$ Hz, 1H), 7.63 (t, $J = 7.5$ Hz, 1H), 7.52 (d, $J = 7.7$ Hz, 2H), 7.44 (d, $J = 7.6$ Hz, 2H), 7.24 (d, $J = 5.9$ Hz, 1H). 13C NMR (151 MHz, CDCl$_3$) δ 141.46, 137.14, 135.27, 134.84, 134.74, 130.76 (2C), 130.27, 128.95 (2C), 128.81, 128.45, 126.24, 121.23, 120.07.

4-(4-(trifluoromethyl)phenyl)quinoline N-oxide (1j). 1H NMR (400 MHz, CDCl$_3$) δ 8.86 (d, $J = 8.7$ Hz, 1H), 8.60 (d, $J = 6.2$ Hz, 1H), 7.88 (d, $J = 8.4$ Hz, 1H), 7.83 – 7.79 (m, 3H), 7.67 – 7.63 (m, 3H), 7.28 (d, $J = 6.2$ Hz, 1H). 13C NMR (151 MHz, CDCl$_3$) δ 141.57, 140.57, 136.72, 134.86, 130.68 (q, $J = 33.3$ Hz), 130.43, 129.94 (2C), 129.06, 128.38, 126.12, 125.71 (q, $J = 3.7$ Hz, 2C), 123.87 (q, $J = 273.7$ Hz), 121.41. 19F NMR (376 MHz, CDCl$_3$) δ -62.55.

6-bromo-4-chloroquinoline N-oxide (1k). 1H NMR (400 MHz, CDCl$_3$) δ 8.62 (d, $J = 9.3$ Hz, 1H), 8.43 (d, $J = 6.6$ Hz, 1H), 8.35 (d, $J = 2.0$ Hz, 1H), 7.88 (dd, $J = 9.3, 2.1$ Hz, 1H), 7.40 (d, $J = 6.6$ Hz, 1H). 13C NMR (101 MHz, CDCl$_3$) δ 140.86, 135.28, 134.52, 129.07, 128.43, 127.41, 124.63, 122.24, 122.10.

4-chloro-6-methoxyquinoline N-oxide (1l). 1H NMR (400 MHz, CDCl$_3$) δ 8.65 (d, $J = 9.5$ Hz, 1H), 8.30 (d, $J = 6.5$ Hz, 1H), 7.41 (dd, $J = 9.5, 2.6$ Hz, 1H), 7.37-7.30 (m, 2H), 3.99 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 160.17, 137.59, 133.18, 129.38, 128.49, 123.39, 122.06, 121.42, 102.94, 55.79.

4-chloro-6-phenylquinoline N-oxide (1m). 1H NMR (600 MHz, CDCl$_3$) δ 8.79 (d, $J = 8.5$ Hz, 1H), 8.43 (d, $J = 5.7$ Hz, 1H), 8.30 (s, 1H), 8.03 (d, $J = 9.0$ Hz, 1H), 7.70 (d, $J = 6.0$ Hz, 2H), 7.51 (t, $J = 7.6$ Hz, 2H), 7.45 (d, $J = 7.5$ Hz, 1H), 7.36 (t, $J = 5.2$ Hz, 1H). 13C NMR (151 MHz, CDCl$_3$) δ 142.49, 141.17, 138.82, 134.95, 130.68, 130.05, 129.06 (2C), 128.55, 128.15, 127.48 (2C), 122.54, 121.29, 120.92.

4,7-dichloroquinoline N-oxide (1n). 1H NMR (600 MHz, CDCl$_3$) δ 8.77 (d, $J = 2.0$ Hz, 1H), 8.43
(d, J = 6.6 Hz, 1H), 8.14 (d, J = 8.9 Hz, 1H), 7.69 (dd, J = 8.9, 2.0 Hz, 1H), 7.38 (d, J = 6.6 Hz, 1H).
13C NMR (151 MHz, CDCl$_3$) δ 142.22, 138.06, 135.81, 130.68, 129.60, 126.65, 126.41, 121.16, 119.81.

7-bromo-4-chloroquinoline N-oxide (1o). 1H NMR (600 MHz, CDCl$_3$) δ 8.95 (s, 1H), 8.44 (d, J = 6.2 Hz, 1H), 8.05 (d, J = 8.7 Hz, 1H), 7.82 (d, J = 8.7 Hz, 1H), 7.39 (d, J = 6.3 Hz, 1H). 13C NMR (151 MHz, CDCl$_3$) δ 142.27, 135.87, 133.28, 129.86, 126.69, 126.56, 126.27, 123.06, 121.29.

4-chloro-7-methoxyquinoline N-oxide (1p). 1H NMR (400 MHz, CDCl$_3$) δ 8.45 (d, J = 6.6 Hz, 1H), 8.10 – 8.08 (m, 2H), 7.37 (dd, J = 9.3, 2.5 Hz, 1H), 7.25 (d, J = 6.6 Hz, 1H), 4.07 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 162.53, 143.40, 135.82, 130.63, 126.52, 122.94, 122.69, 118.53, 98.72, 56.18.

7-chloro-4-methoxyquinoline N-oxide (1q). 1H NMR (600 MHz, CDCl$_3$) δ 8.76 (s, 1H), 8.47 (d, J = 6.8 Hz, 1H), 8.15 (d, J = 8.9 Hz, 1H), 7.58 (d, J = 8.9 Hz, 1H), 6.65 (d, J = 6.8 Hz, 1H), 4.07 (s, 3H). 13C NMR (151 MHz, CDCl$_3$) δ 154.35, 141.40, 137.82, 137.01, 128.99, 124.25, 120.92, 119.44, 99.82, 77.21, 77.00, 76.79, 56.33.

4-chloro-6,7-dimethoxyquinoline N-oxide (1r). 1H NMR (400 MHz, CDCl$_3$) δ 8.33 (d, J = 6.6 Hz, 1H), 8.06 (s, 1H), 7.31 (s, 1H), 7.24 (d, J = 6.6 Hz, 1H), 4.11 (s, 3H), 4.07 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 153.85, 151.84, 138.10, 133.84, 128.42, 123.41, 119.13, 102.65, 99.43, 56.69, 56.29.

quinoline N-oxide (1s). 1H NMR (600 MHz, CDCl$_3$) δ 8.76 (d, J = 8.8 Hz, 1H), 8.55 (d, J = 5.9 Hz, 1H), 7.88 (d, J = 8.2 Hz, 1H), 7.78 -7.74 (m, 2H), 7.65 (t, J = 7.5 Hz, 1H), 7.30 (t, J = 7.2 Hz, 1H). 13C NMR (151 MHz, CDCl$_3$) δ 141.40, 135.53, 130.39, 130.34, 128.66, 128.03, 125.96, 120.86, 119.63.

quinolxaline N-oxide (1t). 1H NMR (600 MHz, CDCl$_3$) δ 8.70 (d, J = 3.5 Hz, 1H), 8.59 (d, J = 8.6 Hz, 1H), 8.39 (d, J = 3.5 Hz, 1H), 8.14 (d, J = 8.4 Hz, 1H), 7.84 (t, J = 7.6 Hz, 1H), 7.76 (t, J = 7.7 Hz, 1H). 13C NMR (151 MHz, CDCl$_3$) δ 145.85, 145.82, 137.36, 131.67, 130.16, 130.00, 129.16, 118.80.
2. NMR Spectra of substrates

1H and 13C spectra of 1a
1H and 13C spectra of 1b
1H and 13C spectra of 1c
1H and 13C spectra of 1d
1H and 13C spectra of 1f
1H and 13C spectra of $1g$
1H, 13C and 19F NMR spectra of 1h
1H and 13C spectra of 1i
1H, 13C and 19F NMR spectra of 1j
1H and 13C spectra of 1k
1H and 13C spectra of 11
1H and 13C spectra of 1m
\(^1\)H and \(^{13}\)C spectra of 1n
1H and 13C spectra of 1o
1H and 13C spectra of 1p
1H and 13C spectra of 1q
1H and 13C spectra of 1r
1H and 13C spectra of 1s
1H and 13C spectra of 1t
3. NMR Spectra of products

${}^1\text{H}, {}^{13}\text{C}$ and ^{19}F NMR spectra of 2a
^{1}H, ^{13}C and ^{19}F NMR spectra of 2b
1H, 13C and 19F NMR spectra of 2c
1H, 13C and 19F NMR spectra of 2d
1H, 13C and 19F NMR spectra of 2e
^{1}H, ^{13}C and ^{19}F NMR spectra of 2f
^{1}H, ^{13}C and ^{19}F NMR spectra of 2g
1H, 13C and 19F NMR spectra of 2h
1H, 13C and 19F NMR spectra of 2i
1H, 13C and 19F NMR spectra of 2j
1H, 13C and 19F NMR spectra of 2k
1H, 13C and 19F NMR spectra of 2l
1H, 13C and 19F NMR spectra of 2m
$^{1}H,^{13}C$ and ^{19}F NMR spectra of 2n
1H, 13C and 19F NMR spectra of 2o
^{1}H, ^{13}C and ^{19}F NMR spectra of 2p
1H, 13C and 19F NMR spectra of 2q
$^{1}\text{H}, ^{13}\text{C}$ and ^{19}F NMR spectra of 2r
1H, 13C and 19F NMR spectra of 2s
1H, 13C and 19F NMR spectra of 2t
4. X-ray data of 2a

4-methyl-2-(trifluoromethyl)quinoline N-oxide (2a), CCDC No. 1945114.

Figure 1 Crystal structure refinement for 2a.

<table>
<thead>
<tr>
<th>Table 1 Crystal data and structure refinement for 2a.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
</tr>
<tr>
<td>Empirical formula</td>
</tr>
<tr>
<td>Formula weight</td>
</tr>
<tr>
<td>Temperature/K</td>
</tr>
<tr>
<td>Crystal system</td>
</tr>
<tr>
<td>Space group</td>
</tr>
<tr>
<td>a/Å</td>
</tr>
<tr>
<td>b/Å</td>
</tr>
<tr>
<td>c/Å</td>
</tr>
<tr>
<td>α/°</td>
</tr>
<tr>
<td>β/°</td>
</tr>
<tr>
<td>γ/°</td>
</tr>
<tr>
<td>Volume/Å³</td>
</tr>
<tr>
<td>Z</td>
</tr>
</tbody>
</table>
5. Stern-Volmer experiments

The fluorescent quenching experiments were conducted at 340 nm and the emission intensity from 450 to 650 nm was recorded. To a 3 mL solution of \(\text{fac-Ir(ppy)}_3 \) (0.0001 mmol/ mL) in MeCN, Togni’s reagent (0 mM, 0.2 mM, 0.4 mM, 0.6 mM, 0.8 mM, 1.0 mM in turn) or 1a (0 mM, 0.2 mM, 0.4 mM, 0.6 mM, 0.8 mM, 1.0 mM in turn) was added.

![Fluorescence spectra](image-url)

Figure 2 Fluorescence spectra of a solution of photocatalyst \(\text{fac-Ir(ppy)}_3 \) in MeCN containing 0 mM, 0.2 mM, 0.4 mM, 0.6 mM, 0.8 mM or 1.0 mM of 1a.
Figure 3 Fluorescence spectra of a solution of photocatalyst fac-Ir(ppy)$_3$ in MeCN containing 0 mM, 0.2 mM, 0.4 mM, 0.6 mM, 0.8 mM or 1.0 mM of Togni’s reagent.

Figure 4 a) Stern–Volmer Quenching experiments. b) Electron transfer from Togni’s reagent to *IrIII. c) Energy transfer from *IrIII to 1a.

Reference