Supporting Information

Iodine-Mediated Oxidative Cyclization from 2-(Pyridin-2-yl)acetates Derivatives and Alkynes: Condition-Controlled Selective Synthesis of Multi-substituted Indolizines

Lisheng Hea,b,c, Yuzhu Yang *a,b,c, Xiaolan Liu,a,b,c Guangyan Liang,a,b,c Chunyan Li,a,b,c Daoping Wanga,b,c and Weidong Pan*a,b,c

aCollege of Pharmacy, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou 550004, P. R. China.

bState Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang 550014, P. R. China

cThe Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang 550014, P. R. China

E-mail: yangyuzhu15@126.com, wdpan@163.com

Contents:

General Information --S2
Optimization of reaction conditions of 5h and 6a-----------------------------S3-S4
General procedure and characterization data for 3a-3i, 4a-4p ----------------S5-S16
General procedure and characterization data for 5a-5l, 6a-6g----------------S16-S26
General procedure and characterization data for 7a-7b, 8a-8b, 9-------------S26-S29
Copies of 1H and 13C NMR Spectra for 3a-3i, 4a-4p-------------------S30-S79
Copies of 1H and 13C NMR Spectra for 5a-5l, 6a-6g--------------------S80-S117
Copies of 1H and 13C NMR Spectra for 7a-7b, 8a-8b-------------------S118-S125
Copies of 1H and 13C NMR Spectra for 9-------------------------------S126-S127
ORTEP diagrams for 4p (CIF) and 5a (CIF) -------------------------------S128-S129
References--S130

51
General Information: All reactions were performed under N₂ unless otherwise stated. The solvents were dried before use by standard procedures. 1H NMR and 13C NMR spectra were recorded in CDCl₃ on a 400 MHz or 600 MHz instrument. All 1H NMR spectra are measured relative to the signals for residual CHCl₃ (7.26 ppm) and all 13C NMR spectral data are reported relative to CDCl₃ (77.16 ppm). Melting point Melting points are measured in WRX-4 melting point apparatus purchased from Shanghai YICE Instrumental Company. HRMS data were recorded on a micrOTOF instrument using ESI technique. All column chromatography was performed using silica gel (200-300 microns). Unless otherwise noted, commercially available chemicals were used as received.
Table S1. Optimization of reaction conditions of 5h

<table>
<thead>
<tr>
<th>entry</th>
<th>ratio of 1a:2a</th>
<th>I₂(equiv)</th>
<th>L(%)</th>
<th>Base(equiv)</th>
<th>Solvent(mL)</th>
<th>Temp(°C)</th>
<th>Time(h)</th>
<th>yield(%)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1:2</td>
<td>2</td>
<td>dppe(20%)</td>
<td>Na₂CO₃(2)</td>
<td>DMF(2)</td>
<td>160</td>
<td>4</td>
<td>33</td>
</tr>
<tr>
<td>2</td>
<td>1:2</td>
<td>1</td>
<td>dppe(20%)</td>
<td>Na₂CO₃(2)</td>
<td>DMF(2)</td>
<td>160</td>
<td>4</td>
<td>39</td>
</tr>
<tr>
<td>3</td>
<td>1:2</td>
<td>3</td>
<td>dppe(20%)</td>
<td>Na₂CO₃(2)</td>
<td>DMF(2)</td>
<td>160</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>1:2</td>
<td>3.5</td>
<td>dppe(20%)</td>
<td>Na₂CO₃(2)</td>
<td>DMF(2)</td>
<td>160</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>1:2</td>
<td>4</td>
<td>dppe(20%)</td>
<td>Na₂CO₃(2)</td>
<td>DMF(2)</td>
<td>160</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>1:2</td>
<td>1</td>
<td>dppe(20%)</td>
<td>Na₂CO₃(2)</td>
<td>DMA(2)</td>
<td>160</td>
<td>4</td>
<td>43</td>
</tr>
<tr>
<td>7</td>
<td>1:2</td>
<td>1</td>
<td>0</td>
<td>Na₂CO₃(2)</td>
<td>DMA(2)</td>
<td>160</td>
<td>4</td>
<td>52</td>
</tr>
<tr>
<td>8</td>
<td>1:2</td>
<td>1</td>
<td>0</td>
<td>Na₂CO₃(2)</td>
<td>NMP(2)</td>
<td>160</td>
<td>4</td>
<td>36</td>
</tr>
<tr>
<td>9</td>
<td>1:2</td>
<td>1</td>
<td>0</td>
<td>Na₂CO₃(2)</td>
<td>DMSO(2)</td>
<td>160</td>
<td>4</td>
<td>trace</td>
</tr>
<tr>
<td>10</td>
<td>1:2</td>
<td>1</td>
<td>0</td>
<td>Na₂CO₃(2)</td>
<td>DMF(2)</td>
<td>160</td>
<td>4</td>
<td>43</td>
</tr>
<tr>
<td>11</td>
<td>1:2</td>
<td>1</td>
<td>0</td>
<td>Na₂CO₃(2)</td>
<td>DMA(dry2)</td>
<td>160</td>
<td>4</td>
<td>33</td>
</tr>
</tbody>
</table>

^aReaction conditions: 1a (0.2 mmol), 2a (0.4 mmol), I₂ (0.2 mmol), Na₂CO₃(0.4 mmol), DMA(2 mL). ^bIsolated yield.
Table S2. Optimization of reaction conditions of 6a

![Chemical structure of 6a]

<table>
<thead>
<tr>
<th>entry</th>
<th>ratio of 1a:2a</th>
<th>I₂(equiv)</th>
<th>L(%)</th>
<th>Base(equiv)</th>
<th>Solvent(mL)</th>
<th>Temp (°C)</th>
<th>Metal (equiv)</th>
<th>Time (h)</th>
<th>yield(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1:2</td>
<td>2</td>
<td>dppe(20%)</td>
<td>Na₂CO₃(2)</td>
<td>DMF(2)</td>
<td>160</td>
<td>0</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>1:2</td>
<td>2</td>
<td>dppe(20%)</td>
<td>Na₂CO₃(2)</td>
<td>DMF(2)</td>
<td>160</td>
<td>CuI(2)</td>
<td>4</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>1:2</td>
<td>1</td>
<td>dppe(20%)</td>
<td>Na₂CO₃(2)</td>
<td>DMF(2)</td>
<td>160</td>
<td>CuI(2)</td>
<td>4</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>1:2</td>
<td>3</td>
<td>dppe(20%)</td>
<td>Na₂CO₃(2)</td>
<td>DMF(2)</td>
<td>160</td>
<td>CuI(2)</td>
<td>4</td>
<td>68</td>
</tr>
<tr>
<td>5</td>
<td>1:2</td>
<td>3.5</td>
<td>dppe(20%)</td>
<td>Na₂CO₃(2)</td>
<td>DMF(2)</td>
<td>160</td>
<td>CuI(2)</td>
<td>4</td>
<td>76</td>
</tr>
<tr>
<td>6</td>
<td>1:2</td>
<td>4</td>
<td>dppe(20%)</td>
<td>Na₂CO₃(2)</td>
<td>DMF(2)</td>
<td>160</td>
<td>CuI(2)</td>
<td>4</td>
<td>36</td>
</tr>
<tr>
<td>7</td>
<td>1:2</td>
<td>0</td>
<td>dppe(20%)</td>
<td>Na₂CO₃(2)</td>
<td>DMF(2)</td>
<td>160</td>
<td>CuI(2)</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1:2</td>
<td>3.5</td>
<td>dppe(20%)</td>
<td>Na₂CO₃(2)</td>
<td>DMF(2)</td>
<td>160</td>
<td>CuI(1)</td>
<td>4</td>
<td>61</td>
</tr>
<tr>
<td>9</td>
<td>1:2</td>
<td>3.5</td>
<td>dppe(20%)</td>
<td>Na₂CO₃(2)</td>
<td>DMF(2)</td>
<td>160</td>
<td>CuI(3)</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>1:2</td>
<td>3.5</td>
<td>dppe(20%)</td>
<td>Na₂CO₃(2)</td>
<td>DMF(2)</td>
<td>160</td>
<td>CuI(20%)</td>
<td>4</td>
<td>26</td>
</tr>
<tr>
<td>11</td>
<td>1:2</td>
<td>3.5</td>
<td>dppe(20%)</td>
<td>Na₂CO₃(2)</td>
<td>DMF(2)</td>
<td>160</td>
<td>CuOAc(2)</td>
<td>4</td>
<td>33</td>
</tr>
<tr>
<td>12</td>
<td>1:2</td>
<td>3.5</td>
<td>dppe(20%)</td>
<td>Na₂CO₃(2)</td>
<td>DMF(2)</td>
<td>160</td>
<td>CuBr(2)</td>
<td>4</td>
<td>59</td>
</tr>
<tr>
<td>13</td>
<td>1:2</td>
<td>3.5</td>
<td>dppe(20%)</td>
<td>Na₂CO₃(2)</td>
<td>DMF(2)</td>
<td>160</td>
<td>CuCl(2)</td>
<td>4</td>
<td>67</td>
</tr>
<tr>
<td>14</td>
<td>1:2</td>
<td>3.5</td>
<td>dppe(20%)</td>
<td>Na₂CO₃(2)</td>
<td>DMF(2)</td>
<td>160</td>
<td>Cu₂O(2)</td>
<td>4</td>
<td>62</td>
</tr>
<tr>
<td>15</td>
<td>1:2</td>
<td>3.5</td>
<td>dppe(20%)</td>
<td>Na₂CO₃(2)</td>
<td>DMF(2)</td>
<td>160</td>
<td>FeCl₃(2)</td>
<td>4</td>
<td>37</td>
</tr>
<tr>
<td>16</td>
<td>1:2</td>
<td>3.5</td>
<td>dppe(20%)</td>
<td>Na₂CO₃(2)</td>
<td>DMF(2)</td>
<td>160</td>
<td>FeCl₂(2)</td>
<td>4</td>
<td>38</td>
</tr>
<tr>
<td>17</td>
<td>1:2</td>
<td>3.5</td>
<td>dppe(20%)</td>
<td>Na₂CO₃(2)</td>
<td>DMF(2)</td>
<td>160</td>
<td>Pd(OAc)₂(2)</td>
<td>4</td>
<td>trace</td>
</tr>
<tr>
<td>18</td>
<td>1:2</td>
<td>3.5</td>
<td>dppe(20%)</td>
<td>Na₂CO₃(2)</td>
<td>DMF(2)</td>
<td>160</td>
<td>AgOAc(2)</td>
<td>4</td>
<td>trace</td>
</tr>
<tr>
<td>b19</td>
<td>1:2</td>
<td>3.5</td>
<td>dppe(20%)</td>
<td>Na₂CO₃(2)</td>
<td>DMF(2)</td>
<td>160</td>
<td>CuI(2)</td>
<td>4</td>
<td>75</td>
</tr>
</tbody>
</table>

aReaction conditions: 1a (0.2 mmol), 2a (0.4 mmol), I₂ (0.7 mmol), dppe (0.04mmol), Na₂CO₃ (0.4 mmol), CuI (0.4 mmol), DMF (2 mL). b1mL H₂O was added. cIsolated yield.
General procedure for synthesis of 3-substituted indolizines derivatives: 3a-3i, 4a-4p

Under N₂ atmosphere, 2-pyridylacetates (1a, 0.2 mmol, 33.0 mg), phenylacetylene (2a, 0.4 mmol, 40.9 mg), I₂ (0.4 mmol, 101.5 mg), dppe (0.04 mmol, 15.9 mg), Na₂CO₃ (0.4 mmol, 42.4 mg), were mixed in 2 mL DMF. The reaction tube was heated in an oil bath at 160 °C for 4 hours. After completion of the reaction, the reaction mixture was washed with saturated sodium thiosulfate solution and extracted with EtOAc (40 mL × 3), dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. The remaining crude product was then purified through column chromatography using silica gel (EtOAc/petroleum ether = 1/5) to afford 3a as a green dark solid in 93% yield.

Ethyl 3-phenylindolizine-1-carboxylate (3a, CAS: 93315-81-2)¹

![Chemical Structure of Ethyl 3-phenylindolizine-1-carboxylate](image)

(Eluent: ethyl acetate/petroleum ether = 1/5, v/v); 93% yield (dark green solid, mp 68–70 °C, 49.3 mg); ¹H NMR (400 MHz, Chloroform-d) δ 8.28 (t, J = 7.9 Hz, 2H), 7.54 (d, J = 7.7 Hz, 2H), 7.49 (t, J = 7.6 Hz, 2H), 7.39 (t, J = 7.3 Hz, 1H), 7.31 (s, 1H), 7.10 – 7.03 (m, 1H), 6.69 (t, J = 6.9 Hz, 1H), 4.40 (q, J = 7.2 Hz, 2H), 1.43 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 165.0, 136.3, 131.2, 129.0, 128.6, 127.9, 123.3, 122.2, 120.1, 116.1, 116.0, 112.5, 104.2, 59.5, 14.6. HR-ESI-MS (m/z): calcd. for C₁₇H₁₅NO₂ [M+H]⁺ 266.1176, found 266.1181.

Methyl 3-phenylindolizine-1-carboxylate (3b, CAS: 947381-33-1)¹

![Chemical Structure of Methyl 3-phenylindolizine-1-carboxylate](image)

(Eluent: ethyl acetate/petroleum ether = 1/10, v/v); 65% yield (yellow solid, mp 68–70 °C, 49.3 mg); ¹H NMR (400 MHz, Chloroform-d) δ 8.28 (t, J = 7.9 Hz, 2H), 7.54 (d, J = 7.7 Hz, 2H), 7.49 (t, J = 7.6 Hz, 2H), 7.39 (t, J = 7.3 Hz, 1H), 7.31 (s, 1H), 7.10 – 7.03 (m, 1H), 6.69 (t, J = 6.9 Hz, 1H), 4.40 (q, J = 7.2 Hz, 2H), 1.43 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 165.0, 136.3, 131.2, 129.0, 128.6, 127.9, 123.3, 122.2, 120.1, 116.1, 116.0, 112.5, 104.2, 59.5, 14.6. HR-ESI-MS (m/z): calcd. for C₁₇H₁₅NO₂ [M+H]⁺ 266.1176, found 266.1181.
111–113 °C, 32.3 mg); 1H NMR (400 MHz, Chloroform-d) δ 8.28 (t, J = 8.6 Hz, 2H), 7.54 (d, J = 7.7 Hz, 2H), 7.49 (t, J = 7.5 Hz, 2H), 7.41 (d, J = 7.3 Hz, 1H), 7.29 (s, 1H), 7.07 (dd, J = 9.0, 6.7 Hz, 1H), 6.70 (t, J = 6.9 Hz, 1H), 3.92 (s, 3H). 13C NMR (100 MHz, Chloroform-d) δ 165.4, 136.4, 131.2, 129.0, 128.6, 127.9, 126.4, 123.3, 122.30, 120.1, 115.9, 112.6, 103.8, 50.9. HR-ESI-MS (m/z): calcd. for C$_{16}$H$_{13}$NO$_2$ [M+H]$^+$ 252.1019, found 252.1028.

Isopropyl 3-phenylindolizine-1-carboxylate (3c, CAS: 1795248-49-5)2

(Eluent: ethyl acetate/petroleum ether = 1/20, v/v); 69% yield (yellow oil, 38.2 mg); 1H NMR (400 MHz, Chloroform-d) δ 8.27 (t, J = 7.5 Hz, 2H), 7.54 (d, J = 7.7 Hz, 2H), 7.49 (t, J = 7.6 Hz, 2H), 7.39 (t, J = 7.3 Hz, 1H), 7.32 (s, 1H), 7.06 (dd, J = 9.1, 6.7 Hz, 1H), 6.69 (t, J = 6.9 Hz, 1H), 5.36 – 5.24 (m, 1H), 1.41 (s, 3H), 1.40 (s, 3H). 13C NMR (100 MHz, Chloroform-d) δ 164.6, 136.2, 131.2, 129.0, 128.5, 127.9, 126.3, 123.3, 122.1, 120.2, 116.1 (d, J = 1.6 Hz), 112.5, 104.7, 66.6, 22.3. HR-ESI-MS (m/z): calcd. for C$_{18}$H$_{17}$NO$_2$ [M+H]$^+$ 280.1332, found 280.1342.

Tert-butyl 3-phenylindolizine-1-carboxylate (3d, CAS: 1428552-42-4)3

(Eluent: ethyl acetate/petroleum ether = 1/10, v/v); 66% yield (yellow oil, 38.6 mg); 1H NMR (400 MHz, Chloroform-d) δ 8.25 (dd, J = 15.8, 8.1 Hz, 2H), 7.54 (d, J = 7.6 Hz, 2H), 7.49 (t, J = 7.5 Hz, 2H), 7.40 (d, J = 7.3 Hz, 1H), 7.28 (s, 1H), 7.03 (dd, J = 9.1, 6.7 Hz, 1H), 6.67 (t, J = 6.9 Hz, 1H), 1.65 (s, 9H). 13C NMR (101 MHz, Chloroform-d) δ 164.6, 135.9, 131.3, 129.0, 128.6, 127.9, 126.1, 123.2, 121.8, 120.1, 116.3, 116.3, 112.3, 105.9, 79.6, 28.6. HR-ESI-MS (m/z): calcd. for C$_{19}$H$_{19}$NO$_2$
Butyl 3-phenylindolizine-1-carboxylate (3e, CAS: 1394827-53-2)\(^3\)

\[
\text{COO}^\text{Bu}
\]

(Eluent: ethyl acetate/petroleum ether = 1/20, v/v); 73% yield (yellow oil, 42.6 mg);

\(^1\)H NMR (400 MHz, Chloroform-d) \(\delta\) 8.27 (t, \(J = 7.7\) Hz, 2H), 7.54 (d, \(J = 7.7\) Hz, 2H), 7.49 (t, \(J = 7.5\) Hz, 2H), 7.39 (t, \(J = 7.3\) Hz, 1H), 7.31 (s, 1H), 7.06 (dd, \(J = 9.1, 6.6\) Hz, 1H), 6.69 (t, \(J = 6.9\) Hz, 1H), 4.35 (t, \(J = 6.7\) Hz, 2H), 1.79 (p, \(J = 6.9\) Hz, 2H), 1.52 (q, \(J = 7.5\) Hz, 2H), 1.00 (t, \(J = 7.4\) Hz, 3H). \(^{13}\)C NMR (100 MHz, Chloroform-d) \(\delta\) 165.1, 136.26, 131.2, 129.0, 128.6, 127.9, 123.3, 122.2, 120.1, 116.1, 116.1, 112.5, 104.2, 63.4, 31.1, 19.4, 13.8. HR-ESI-MS (m/z): calcd. for C\(_{19}\)H\(_{19}\)NO\(_2\) \([\text{M+H}]^+\) 294.1489, found 294.1496.

1-(3-phenylindolizin-1-yl)ethanone (3f, CAS: 1126444-46-9)\(^4\)

\[
\begin{array}{c}
\text{CH}_2
\end{array}
\]

(Eluent: ethyl acetate/petroleum ether = 1/10, v/v); 38% yield (pale yellow solid, mp 132–134 °C, 17.6 mg); \(^1\)H NMR (600 MHz, Chloroform-d) \(\delta\) 8.53 (d, \(J = 9.0\) Hz, 1H), 8.29 (d, \(J = 7.0\) Hz, 1H), 7.55 (d, \(J = 7.7\) Hz, 2H), 7.51 (t, \(J = 7.7\) Hz, 2H), 7.42 (t, \(J = 8.0\) Hz, 1H), 7.19 (s, 1H), 7.17 – 7.14 (m, 1H), 6.79 – 6.75 (m, 1H), 2.56 (s, 3H). \(^{13}\)C NMR (150 MHz, Chloroform-d) \(\delta\) 193.1, 135.9, 131.1, 129.2, 128.7, 128.2, 123.9, 123.2, 121.1, 116.5, 113.6, 113.5, 28.0. HR-ESI-MS (m/z): calcd. for C\(_{16}\)H\(_{13}\)NO \([\text{M+H}]^+\) 236.1070, found 236.1074.

Ethyl 5-methyl-3-phenylindolizine-1-carboxylate (3g)
(Eluent: ethyl acetate/petroleum ether = 1/20, v/v); 74% yield (yellow solid, mp 115–117 °C, 41 mg); ^1^H NMR (400 MHz, Chloroform-d) δ 8.27 (d, J = 9.0 Hz, 1H), 7.39 (q, J = 6.4, 5.6 Hz, 5H), 7.20 (s, 1H), 7.00 (dd, J = 9.0, 6.8 Hz, 1H), 6.45 (d, J = 6.7 Hz, 1H), 4.38 (t, J = 7.1 Hz, 2H), 2.12 (s, 3H), 1.40 (t, J = 7.1 Hz, 3H). ^1^C NMR (100 MHz, Chloroform-d) δ 165.0, 137.9, 136.1, 134.8, 131.1, 128.0, 127.2, 122.3, 118.8 (d, J = 2.0 Hz), 118.0, 114.2, 103.2, 59.4, 29.7, 22.9, 14.6. HR-ESI-MS (m/z): calcd. for C\textsubscript{18}H\textsubscript{17}NO\textsubscript{2} [M+H]^+ 280.1332, found 280.1344.

Ethyl 6-methyl-3-phenylindolizine-1-carboxylate (3h)

(Eluent: ethyl acetate/petroleum ether = 1/20, v/v); 60% yield (yellow solid, mp 108–110 °C, 33.2 mg); ^1^H NMR (500 MHz, Chloroform-d) δ 8.22 (d, J = 8.9 Hz, 1H), 8.12 (s, 1H), 7.59 (d, J = 6.6 Hz, 2H), 7.54 (t, J = 6.7 Hz, 2H), 7.44 (s, 1H), 7.30 (s, 1H), 6.98 (d, J = 8.9 Hz, 1H), 4.43 (q, J = 5.8, 4.6 Hz, 2H), 2.30 (s, 3H), 1.47 (t, J = 7.0 Hz, 3H). ^1^C NMR (125 MHz, Chloroform-d) δ 165.1, 135.3, 131.5, 129.1, 128.7, 127.9, 126.1, 125.5, 122.2, 121.1, 120.9, 119.6, 119.5, 115.9, 103.9, 59.5, 18.5, 14.7. HR-ESI-MS (m/z): calcd. for C\textsubscript{18}H\textsubscript{17}NO\textsubscript{2} [M+H]^+ 280.1332, found 280.1339.

Ethyl 6-bromo-3-phenylindolizine-1-carboxylate (3i)

(Eluent: ethyl acetate/petroleum ether = 1/20, v/v); 48% yield (yellow solid, mp
105–107 °C, 33.2 mg); ¹H NMR (600 MHz, Chloroform-d) δ 8.38 (s, 1H), 8.16 (d, J = 10.1 Hz, 1H), 7.52 (d, J = 4.5 Hz, 4H), 7.44 (d, J = 4.1 Hz, 1H), 7.28 (s, 1H), 7.11 (d, J = 1.6 Hz, 1H), 4.39 (q, J = 7.1 Hz, 2H), 1.42 (t, J = 7.1 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-d) δ 164.7, 134.3, 130.6, 129.3, 128.7, 128.5, 126.8, 125.2, 123.26, 120.9, 116.5, 107.8, 105.6, 59.8, 14.6. HR-ESI-MS (m/z): calcd. for C₁₇H₁₄BrNO₂ [M+H]⁺ 345.0208, found 345.0210.

Ethyl 3-(2-fluorophenyl)indolizine-1-carboxylate (4a,CAS:1631741-05-3)²

(Eluent: ethyl acetate/petroleum ether = 1/20, v/v); 68% yield (pale yellow oil, 38.5 mg); ¹H NMR (400 MHz, Chloroform-d) δ 8.29 (d, J = 9.1 Hz, 1H), 7.89 (dd, J = 7.1, 3.4 Hz, 1H), 7.50 (dd, J = 7.5, 1.6 Hz, 1H), 7.44 (d, J = 7.2 Hz, 1H), 7.37 (s, 1H), 7.29 (d, J = 7.6 Hz, 1H), 7.22 (d, J = 9.1 Hz, 1H), 7.12 (dd, J = 9.0, 6.7 Hz, 1H), 6.74 (t, J = 6.9 Hz, 1H), 4.41 (q, J = 7.1 Hz, 2H), 1.43 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 164.8, 136.4, 133.7, 129.7, 129.6, 129.3, 125.0, 123.1, 122.4, 120.2, 116.3, 116.3, 112.8, 104.4, 59.6, 14.6. HR-ESI-MS (m/z): calcd. for C₁₇H₁₄FNO₂ [M+H]⁺ 284.1081, found 284.1092.

Ethyl 3-(3-fluorophenyl)indolizine-1-carboxylate (4b,CAS:2027550-24-7)²

(Eluent: ethyl acetate/petroleum ether = 1/20, v/v); 71% yield (yellow oil, 40 mg); ¹H NMR (400 MHz, Chloroform-d) δ 8.28 (t, J = 8.0 Hz, 2H), 7.51 – 7.37 (m, 1H), 7.33 (d, J = 3.9 Hz, 2H), 7.24 (dt, J = 9.8, 2.0 Hz, 1H), 7.08 (dd, J = 9.1, 6.8 Hz, 2H), 6.72 (t, J = 6.9 Hz, 1H), 4.39 (q, J = 7.1 Hz, 2H), 1.42 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 164.8, 136.5, 133.5, 133.2, 130.7, 130.6, 124.0, 123.9,
123.2, 122.5, 120.2, 116.6, 116.5, 112.8, 104.5, 59.6, 14.6. HR-ESI-MS (m/z): calcd. for C_{17}H_{14}FNO_2 [M + H]^+ 284.1081, found 284.1093.

Ethyl 3-(4-fluorophenyl)indolizine-1-carboxylate (4c,CAS:1621928-41-3)

![Chemical Structure](image1)

(Eluent: ethyl acetate/petroleum ether = 1/20, v/v); 69% yield (yellow solid, mp 98–100 °C, 34.6 mg); \(^1\)H NMR (400 MHz, Chloroform-d) δ 8.25 (d, J = 9.1 Hz, 1H), 8.17 (d, J = 7.1 Hz, 1H), 7.49 (d, J = 5.4 Hz, 1H), 7.47 (d, J = 5.3 Hz, 1H), 7.26 (s, 1H), 7.18 (t, J = 8.5 Hz, 2H), 7.06 (dd, J = 9.0, 6.7 Hz, 1H), 6.69 (t, J = 6.9 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 1.41 (t, J = 7.1 Hz, 3H). \(^{13}\)C NMR (100 MHz, Chloroform-d) δ 164.9, 163.6, 136.2, 130.5, 130.4, 123.0, 122.2, 120.1, 116.2, 116.0, 112.7, 104.2, 59.5, 14.6. HR-ESI-MS (m/z): calcd. for C_{17}H_{14}FNO_2 [M+H]^+ 284.1081, found 284.1088.

Ethyl3-(4-(trifluoromethyl)phenyl)indolizine-1-carboxylate

(4d,CAS:1714114-01-8)

![Chemical Structure](image2)

(Eluent: ethyl acetate/petroleum ether = 1/20, v/v); 77% yield (yellow solid, mp 91–93 °C, 50.9 mg); \(^1\)H NMR (400 MHz, Chloroform-d) δ 8.33 – 8.24 (m, 2H), 7.74 (d, J = 8.1 Hz, 2H), 7.67 (d, J = 8.1 Hz, 2H), 7.37 (s, 1H), 7.10 (dd, J = 9.2, 6.6 Hz, 1H), 6.75 (t, J = 7.0 Hz, 1H), 4.39 (q, J = 7.1 Hz, 2H), 1.42 (t, J = 7.1 Hz, 3H). \(^{13}\)C NMR (100 MHz, Chloroform-d) δ 164.7, 136.8, 134.8, 128.3, 126.1, 126.0, 124.7, 123.0, 122.7, 120.3, 117.0, 113.1, 104.8, 59.7, 29.7, 14.6. HR-ESI-MS (m/z): calcd. for C_{18}H_{14}F_3NO_2 [M + H]^+ 334.1049, found 334.1056.
Ethyl 3-(4-chlorophenyl)indolizine-1-carboxylate (4e,CAS:1621928-42-4)1

(Eluent: ethyl acetate/petroleum ether = 1/20, v/v); 77% yield (yellow solid, mp 107–109 °C, 46 mg); 1H NMR (400 MHz, Chloroform-d) δ 8.26 (d, J = 9.1 Hz, 1H), 8.21 (d, J = 7.1 Hz, 1H), 7.45 (s, 4H), 7.28 (s, 1H), 7.10 – 7.03 (m, 1H), 6.70 (t, J = 6.8 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 1.41 (t, J = 7.1 Hz, 3H). 13C NMR (100 MHz, Chloroform-d) δ 164.8, 136.4, 133.7, 129.7, 129.6, 129.3, 125.0, 123.1, 122.4, 120.2, 116.3, 116.3, 112.8, 104.4, 59.6, 14.6. HR-ESI-MS (m/z): calcd. for C$_{17}$H$_{16}$ClNO$_2$ [M+H]$^+$ 300.0786, found 300.0795 .

Ethyl 3-(4-bromophenyl)indolizine-1-carboxylate (4f,CAS:1714114-00-7)1

(Eluent: ethyl acetate/petroleum ether = 1/20, v/v); 77% yield (yellow solid, mp 99–101 °C, 52.6 mg); 1H NMR (400 MHz, Chloroform-d) δ 8.25 (d, J = 9.1 Hz, 1H), 8.21 (d, J = 7.2 Hz, 1H), 7.60 (d, J = 8.2 Hz, 2H), 7.39 (d, J = 8.2 Hz, 2H), 7.28 (s, 1H), 7.06 (dd, J = 9.0, 6.7 Hz, 1H), 6.70 (t, J = 6.9 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 1.41 (t, J = 7.1 Hz, 3H). 13C NMR (100 MHz, Chloroform-d) δ 164.8, 136.4, 132.2, 130.1, 129.9, 125.0, 123.0, 122.4, 121.8, 120.2, 116.3, 112.8, 104.5, 59.6, 14.6. HR-ESI-MS (m/z): calcd. for C$_{17}$H$_{16}$BrNO$_2$ [M+H]$^+$ 344.0281, found 344.0284 .

Ethyl 3-(4-nitrophenyl)indolizine-1-carboxylate (4g,CAS:158670-22-5)4
(Eluent: ethyl acetate/petroleum ether = 1/10, v/v); 94% yield (orange-red solid, mp 140–142 °C, 51.1 mg); \(^1\)H NMR (600 MHz, Chloroform-d) \(\delta\) 8.37 (d, \(J = 7.1\) Hz, 1H), 8.30 (dd, \(J = 15.8, 8.7\) Hz, 3H), 7.71 (d, \(J = 8.3\) Hz, 2H), 7.43 (s, 1H), 7.17 – 7.11 (m, 1H), 6.81 (t, \(J = 6.9\) Hz, 1H), 4.38 (q, \(J = 7.1\) Hz, 2H), 1.41 (t, \(J = 7.2\) Hz, 3H). \(^{13}\)C NMR (150 MHz, Chloroform-d) \(\delta\) 164.5, 146.5, 137.8, 137.5, 130.6, 128.0, 124.6, 124.0, 123.4, 123.2, 120.5, 118.2, 113.7, 105.6, 59.9, 14.6. HR-ESI-MS (m/z): calcd. for C\(_{17}\)H\(_{14}\)N\(_2\)O\(_4\) [M+H]\(^+\) 311.1026, found 311.1035.

Ethyl 3-(p-tolyl)indolizine-1-carboxylate (4h,CAS:247075-84-9)\(^1\)

(Eluent: ethyl acetate/petroleum ether = 1/10, v/v); 75% yield (yellow solid, mp 96 –98 °C, 41.8 mg); \(^1\)H NMR (400 MHz, Chloroform-d) \(\delta\) 8.29 – 8.21 (m, 2H), 7.42 (d, \(J = 7.8\) Hz, 2H), 7.29 (d, \(J = 7.7\) Hz, 3H), 7.05 (dd, \(J = 9.1, 6.7\) Hz, 1H), 6.67 (t, \(J = 6.9\) Hz, 1H), 4.40 (q, \(J = 7.1\) Hz, 2H), 2.42 (s, 3H), 1.43 (t, \(J = 7.1\) Hz, 3H). \(^{13}\)C NMR (100 MHz, Chloroform-d) \(\delta\) 165.0, 137.9, 136.2, 129.7, 128.5, 128.2, 126.5, 123.3, 122.0, 120.1, 115.8, 112.4, 104.0, 59.5, 21.3, 14.7. HR-ESI-MS (m/z): calcd. for C\(_{18}\)H\(_{17}\)NO\(_2\) [M + H]\(^+\) 280.1332, found 280.1344.

Ethyl 3-(4-(tert-butyl)phenyl)indolizine-1-carboxylate (4i,CAS:1776070-38-2)\(^6\)
Ethyl 3-(4-methoxyphenyl)indolizine-1-carboxylate (4j, CAS: 1621928-40-2)1

(Eluent: ethyl acetate/petroleum ether = 1/10, v/v); 60% yield (yellow solid, mp 124–126 °C, 35.2 mg); 1H NMR (400 MHz, Chloroform-d) δ 8.25 (d, J = 9.1 Hz, 1H), 8.19 (d, J = 7.1 Hz, 1H), 7.44 (d, J = 8.3 Hz, 2H), 7.24 (s, 1H), 7.03 (dd, J = 8.5, 6.2 Hz, 3H), 6.67 (t, J = 6.8 Hz, 1H), 4.39 (q, J = 7.1 Hz, 2H), 3.86 (s, 3H), 1.42 (t, J = 7.1 Hz, 3H). 13C NMR (100 MHz, Chloroform-d) δ 165.1, 159.4, 136.0, 130.1, 123.5, 123.3, 121.9, 120.0, 115.6, 115.5, 114.5, 112.4, 103.9, 59.5, 55.3, 55.3, 14.6. HR-ESI-MS (m/z): calcd. for C$_{18}$H$_{17}$NO$_2$ [M+H]$^+$ 296.1281, found 296.1294.

Ethyl 3-([1,1'-biphenyl]-4-yl)indolizine-1-carboxylate (4k, CAS: 1776070-42-8)2

(Eluent: ethyl acetate/petroleum ether = 1/20, v/v); 78% yield (yellow solid, mp 95–97 °C, 49.8 mg); 1H NMR (400 MHz, Chloroform-d) δ 8.28 (dd, J = 17.0, 8.1 Hz, 2H), 7.50 (q, J = 8.3 Hz, 4H), 7.29 (s, 1H), 7.10 – 7.02 (m, 1H), 6.68 (t, J = 6.8 Hz, 1H), 4.40 (q, J = 7.1 Hz, 2H), 1.43 (t, J = 7.1 Hz, 3H), 1.39 (s, 9H). 13C NMR (100 MHz, Chloroform-d) δ 165.1, 151.0, 136.2, 128.3, 128.3, 126.4, 126.0, 123.5, 122.0, 120.1, 115.8, 115.8, 112.4, 104.1, 59.5, 34.7, 31.3, 14.6. HR-ESI-MS (m/z): calcd. for C$_{21}$H$_{23}$NO$_2$ [M+H]$^+$ 322.1802, found 322.1814.
(Eluent: ethyl acetate/petroleum ether = 1/20, v/v); 72% yield (yellow solid, mp 143–145 °C, 48.9 mg); ¹H NMR (400 MHz, Chloroform-d) δ 8.36 (d, J = 7.1 Hz, 1H), 8.31 (d, J = 9.1 Hz, 1H), 7.73 (d, J = 8.0 Hz, 2H), 7.66 (d, J = 7.7 Hz, 2H), 7.62 (d, J = 8.0 Hz, 2H), 7.49 (t, J = 7.6 Hz, 2H), 7.43 – 7.36 (m, 2H), 7.12 – 7.05 (m, 1H), 6.72 (t, J = 6.9 Hz, 1H), 4.43 (q, J = 7.1 Hz, 2H), 1.45 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 165.0, 140.7, 140.3, 136.4, 130.1, 128.9, 128.8, 127.7, 127.6, 127.0, 126.0, 123.4, 122.3, 120.2, 116.2, 112.7, 104.4, 59.6, 14.7. HR-ESI-MS (m/z): calcd. for C₂₃H₁₉NO₂ [M+H]⁺ 342.1489, found 342.1495.

Ethyl 3-(thiophen-3-yl)indolizine-1-carboxylate (4l,CAS:1638213-47-4)

(Eluent: ethyl acetate/petroleum ether = 1/10, v/v); 59% yield (pale yellow solid, mp 111–113 °C, 31.9 mg); ¹H NMR (400 MHz, Chloroform-d) δ 8.29 – 8.22 (m, 2H), 7.46 (dd, J = 4.8, 3.1 Hz, 1H), 7.43 (d, J = 2.8 Hz, 1H), 7.32 (s, 1H), 7.30 (d, J = 5.0 Hz, 1H), 7.05 (dd, J = 9.2, 6.7 Hz, 1H), 6.71 (t, J = 6.9 Hz, 1H), 4.39 (q, J = 7.1 Hz, 2H), 1.42 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 164.9, 136.1, 131.5, 127.5, 126.5, 123.6, 122.6, 122.1, 121.7, 120.0, 116.0, 112.7, 104.0, 59.5, 14.6. HR-ESI-MS (m/z): calcd. for C₁₅H₁₃NO₂S [M+H]⁺ 271.0740, found 271.0748.

Ethyl 3-(thiophen-2-yl)indolizine-1-carboxylate (4m,CAS:1621928-45-7)

Ethyl 3-(thiophen-2-yl)indolizine-1-carboxylate (4m,CAS:1621928-45-7)
(Eluent: ethyl acetate/petroleum ether = 1/10, v/v); 60% yield (orange-yellow solid, mp 78–80 °C, 32.4 mg); ^1^H NMR (600 MHz, Chloroform-d) δ 8.37 (dd, J = 7.1, 1.1 Hz, 1H), 8.26 (dt, J = 9.1, 1.3 Hz, 1H), 7.41 – 7.37 (m, 2H), 7.25 (dd, J = 3.6, 1.2 Hz, 1H), 7.16 (dd, J = 5.2, 3.6 Hz, 1H), 7.10 – 7.07 (m, 1H), 6.78 – 6.74 (m, 1H), 4.39 (q, J = 7.1 Hz, 2H), 1.42 (t, J = 7.1 Hz, 3H). \(^{13}\)C NMR (150 MHz, Chloroform-d) δ 164.8, 136.6, 132.3, 127.7, 126.2, 125.8, 123.8, 122.5, 120.1, 119.2, 117.5, 113.0, 104.4, 59.7, 14.7. HR-ESI-MS (m/z): calcd. for C\(_{15}\)H\(_{13}\)NO\(_2\)S [M+H]^+ 272.0740, found 272.0749.

Ethyl 3-(pyridin-2-yl)indolizine-1-carboxylate (4n,CAS:1776070-49-5)

![Chemical Structure](image)

(Eluent: ethyl acetate/petroleum ether = 1/10, v/v); 51% yield (yellow solid, mp 144–146 °C, 26.9 mg); ^1^H NMR (400 MHz, Chloroform-d) δ 10.04 (d, J = 7.2 Hz, 1H), 8.59 (d, J = 4.8 Hz, 1H), 8.27 (d, J = 9.0 Hz, 1H), 7.74 (s, 1H), 7.67 (d, J = 4.2 Hz, 2H), 7.15 (dd, J = 9.0, 6.8 Hz, 1H), 7.09 (d, J = 4.3 Hz, 1H), 6.82 (t, J = 7.0 Hz, 1H), 4.39 (d, J = 7.1 Hz, 2H), 1.43 (t, J = 7.1 Hz, 3H). \(^{13}\)C NMR (100 MHz, Chloroform-d) δ 164.7, 151.7, 148.2, 137.8, 136.4, 127.8 (d, J = 1.5 Hz), 123.5 (d, J = 6.5 Hz), 121.0, 120.5, 119.3, 117.8 (d, J = 1.7 Hz), 113.0, 104.5, 59.6, 14.6. HR-ESI-MS (m/z): calcd. for C\(_{16}\)H\(_{14}\)N\(_2\)O\(_2\) [M+H]^+ 267.1128, found 267.1136.

Ethyl 3-(pyridin-3-yl)indolizine-1-carboxylate (4o)

![Chemical Structure](image)

(Eluent: ethyl acetate/petroleum ether = 1/3, v/v); 43% yield (yellow solid, mp 80–82 °C, 23 mg); ^1^H NMR (400 MHz, Chloroform-d) δ 8.78 (d, J = 2.3 Hz, 1H), 8.62 – 8.57 (m, 1H), 8.24 (d, J = 9.0 Hz, 1H), 8.19 (d, J = 7.1 Hz, 1H), 7.82 (dt, J =
8.1, 2.0 Hz, 1H), 7.39 (dd, J = 7.9, 4.8 Hz, 1H), 7.32 (s, 1H), 7.10 – 7.03 (m, 1H), 6.71 (t, J = 6.9 Hz, 1H), 4.36 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H). 13C NMR (100 MHz, Chloroform-d) δ 164.7, 149.3, 148.9, 136.7, 135.6, 127.41, 123.7, 122.8, 122.7, 122.6, 120.3, 116.9, 113.1, 104.7, 59.6, 14.6. HR-ESI-MS (m/z): calcd. for C16H14N2O2 [M + H]+ 267.1128, found 267.1136.

Diethyl indolizine-1,3-dicarboxylate (4p, CAS: 55814-13-6)

![Diagram](image)

(Eluent: ethyl acetate/petroleum ether = 1/20, v/v); 29% yield (pale yellow solid, mp 112–114 °C, 15 mg); 1H NMR (600 MHz, Chloroform-d) δ 9.50 (dt, J = 7.1, 1.1 Hz, 1H), 8.34 – 8.29 (m, 1H), 7.97 (s, 1H), 7.31 – 7.27 (m, 1H), 6.96 (dd, J = 7.0, 1.4 Hz, 1H), 4.40 – 4.34 (m, 4H), 1.41 (td, J = 7.2, 5.2 Hz, 6H). 13C NMR (150 MHz, Chloroform-d) δ 164.2, 161.2, 139.1, 127.9, 125.6, 124.2, 119.6, 114.7, 114.3, 105.2, 60.3, 59.9, 14.6, 14.5. HR-ESI-MS (m/z): calcd. for C14H15NO4 [M+H]+ 262.1074, found 262.1073.

General procedure for synthesis of multi-substituted indolizines derivatives:

5a-5l

Under N2 atmosphere, 2-pyridylacetates (1a, 0.2 mmol, 33.0 mg), ethyl phenyl propynoate (2a, 0.4 mmol, 69.7 mg), I2 (0.2 mmol, 50.8 mg), Na2CO3 (0.4 mmol, 42.4 mg), were mixed in 2 mL DMA. The reaction tube was heated in an oil bath at 160 °C for 4 hours. After completion of the reaction, the reaction mixture was washed with saturated sodium thiosulfate solution and extracted with EtOAc (40 mL × 3), dried over anhydrous Na2SO4 and the solvent was removed under reduced pressure. The remaining crude product was then purified through column chromatography using silica gel (EtOAc/petroleum ether = 1/10) to afford 5a as a pale yellow solid in 47% yield.
Diethyl 3-phenylindolizine-1,2-dicarboxylate (5a,CAS:1268825-51-9)9

(Eluent: ethyl acetate/petroleum ether = 1/10, v/v); 47% yield (pale yellow solid, mp 40–42 °C, 31.6 mg); 1H NMR (600 MHz, Chloroform-d) δ 8.24 (dd, $J = 9.2$, 1.3 Hz, 1H), 8.04 – 8.01 (m, 1H), 7.52 – 7.48 (m, 4H), 7.46 – 7.43 (m, 1H), 7.11 (ddd, $J = 9.2$, 6.6, 1.1 Hz, 1H), 6.71 (td, $J = 6.9$, 1.4 Hz, 1H), 4.37 (q, $J = 7.1$ Hz, 2H), 4.26 (q, $J = 7.2$ Hz, 2H), 1.38 (t, $J = 7.1$ Hz, 3H), 1.20 (t, $J = 7.1$ Hz, 3H). 13C NMR (150 MHz, Chloroform-d) δ 166.3, 164.3, 135.3, 130.1, 129.1, 129.0, 125.1, 123.6, 122.3, 120.4, 113.5, 101.8, 61.4, 51.2, 14.1. HR-ESI-MS (m/z): calcd. for C$_{20}$H$_{19}$NO$_4$ [M+H]$^+$ 338.1387, found 338.1390.

1-ethyl 1-methyl 3-phenylindolizine-1,2-dicarboxylate (5b)

(Eluent: ethyl acetate/petroleum ether = 1/10, v/v); 31% yield (yellow solid, mp 80–82 °C, 20 mg); 1H NMR (600 MHz, Chloroform-d) δ 8.23 (dt, $J = 9.1$, 1.3 Hz, 1H), 8.02 (d, $J = 7.2$ Hz, 1H), 7.53 – 7.47 (m, 4H), 7.45 (d, $J = 6.8$ Hz, 1H), 7.11 (ddd, $J = 9.1$, 6.6, 1.1 Hz, 1H), 6.71 (td, $J = 6.9$, 1.4 Hz, 1H), 4.27 (q, $J = 7.1$ Hz, 2H), 3.89 (s, 3H), 1.20 (t, $J = 7.1$ Hz, 3H). 13C NMR (150 MHz, Chloroform-d) δ 166.3, 164.3, 135.3, 130.1, 129.1, 129.0, 125.1, 123.6, 122.3, 120.4, 113.5, 101.8, 61.4, 51.2, 14.1. HR-ESI-MS (m/z): calcd. for C$_{19}$H$_{17}$NO$_4$ [M+H]$^+$ 324.1230, found 324.1233.

1-ethyl 1-isopropyl 3-phenylindolizine-1,2-dicarboxylate (5c)
(Eluent: ethyl acetate/petroleum ether = 1/10, v/v); 37% yield (yellow oil, 26 mg); 1H NMR (600 MHz, Chloroform-d) δ 8.24 (dt, $J = 9.0$, 1.3 Hz, 1H), 8.02 (dd, $J = 7.1$, 1.2 Hz, 1H), 7.52 – 7.46 (m, 4H), 7.46 – 7.41 (m, 1H), 7.09 (ddd, $J = 9.1$, 6.6, 1.1 Hz, 1H), 6.70 (dd, $J = 6.9$, 1.4 Hz, 1H), 5.30 – 5.25 (m, 1H), 4.26 (q, $J = 7.2$ Hz, 2H), 1.36 (d, $J = 6.2$ Hz, 6H), 1.21 (t, $J = 7.1$ Hz, 3H). 13C NMR (150 MHz, Chloroform-d) δ 166.4, 163.4, 135.2, 130.0, 129.1, 129.0, 124.7, 123.5, 123.3, 122.4, 120.4, 113.4, 102.4, 67.2, 61.3, 22.2, 14.0. HR-ESI-MS (m/z): calcd. for C$_{21}$H$_{21}$NO$_4$ [M+H]$^+$ 352.1543, found 352.1549.

1-tert-butyl 2-ethyl 3-phenylindolizine-1,2-dicarboxylate (5d)

(Eluent: ethyl acetate/petroleum ether = 1/10, v/v); 31% yield (yellow oil, 22.6 mg); 1H NMR (600 MHz, Chloroform-d) δ 8.22 (dt, $J = 9.2$, 1.3 Hz, 1H), 8.00 (dd, $J = 7.1$, 1.2 Hz, 1H), 7.49 (d, $J = 6.4$ Hz, 4H), 7.45 – 7.41 (m, 1H), 7.06 (ddd, $J = 9.1$, 6.6, 1.1 Hz, 1H), 6.67 (td, $J = 6.8$, 1.4 Hz, 1H), 4.24 (q, $J = 7.2$ Hz, 2H), 1.60 (s, 9H), 1.17 (t, $J = 7.2$ Hz, 3H). 13C NMR (150 MHz, Chloroform-d) δ 166.4, 163.2, 135.1, 130.0, 129.2, 129.0, 128.9, 124.5, 123.4, 123.0, 122.3, 120.4, 113.3, 103.5, 80.3, 61.2, 28.5, 14.0. HR-ESI-MS (m/z): calcd. for C$_{22}$H$_{23}$NO$_4$ [M+H]$^+$ 366.1700, found 366.1704.

1-butyl 2-ethyl 3-phenylindolizine-1,2-dicarboxylate (5e)

(Eluent: ethyl acetate/petroleum ether = 1/10, v/v); 35% yield (yellow solid, mp
83–85 °C, 25.6 mg); \(^1\)H NMR (600 MHz, Chloroform-d) \(\delta\) 8.24 (dt, \(J = 9.1, 1.3\) Hz, 1H), 8.02 (dt, \(J = 7.2, 1.1\) Hz, 1H), 7.52 – 7.47 (m, 4H), 7.46 – 7.41 (m, 1H), 7.10 (ddd, \(J = 9.2, 6.6, 1.1\) Hz, 1H), 6.70 (td, \(J = 6.8, 1.4\) Hz, 1H), 4.32 (t, \(J = 6.7\) Hz, 2H), 4.25 (q, \(J = 7.1\) Hz, 2H), 1.76 – 1.71 (m, 2H), 1.52 – 1.43 (m, 2H), 1.19 (t, \(J = 7.1\) Hz, 3H), 0.97 (t, \(J = 7.4\) Hz, 3H). \(^{13}\)C NMR (150 MHz, Chloroform-d) \(\delta\) 166.4, 164.0, 135.3, 130.0, 129.0, 124.8, 123.5, 123.5, 122.4, 120.4, 113.4, 102.1, 63.9, 61.3, 31.0, 19.3, 14.0, 13.8. HR-ESI-MS (m/z): calcd. for C\(_{22}\)H\(_{23}\)NO\(_4\) [M+H]\(^+\) 366.1700, found 366.1705.

Diethyl 3-(4-chlorophenyl)indolizine-1,2-dicarboxylate (5f)

(Eluent: ethyl acetate/petroleum ether = 1/20, v/v); 44% yield (brown oil, 32.6 mg); \(^1\)H NMR (600 MHz, Chloroform-d) \(\delta\) 8.25 (dt, \(J = 9.2, 1.2\) Hz, 1H), 7.97 (dd, \(J = 7.1, 1.1\) Hz, 1H), 7.52 – 7.43 (m, 4H), 7.12 (ddd, \(J = 9.1, 6.6, 1.1\) Hz, 1H), 6.73 (td, \(J = 6.9, 1.3\) Hz, 1H), 4.37 (q, \(J = 7.1\) Hz, 2H), 4.27 (q, \(J = 7.1\) Hz, 2H), 1.38 (t, \(J = 7.1\) Hz, 3H), 1.24 (t, \(J = 7.2\) Hz, 3H). \(^{13}\)C NMR (150 MHz, Chloroform-d) \(\delta\) 166.1, 163.7, 135.4, 135.1, 131.4, 129.4, 127.5, 123.6, 123.2, 120.5, 113.7, 61.5, 60.0, 14.5, 14.1. HR-ESI-MS (m/z): calcd. for C\(_{20}\)H\(_{18}\)ClNO\(_4\) [M+H]\(^+\) 372.0997, found 372.1000.

Diethyl 3-(4-methoxyphenyl)indolizine-1,2-dicarboxylate (5g)

(Eluent: ethyl acetate/petroleum ether = 1/5, v/v); 33% yield (brown oil, 24.2 mg); \(^1\)H NMR (600 MHz, Chloroform-d) \(\delta\) 8.23 (dd, \(J = 9.2, 1.5\) Hz, 1H), 7.97 (d, \(J = 7.1\) Hz, 1H), 7.45 – 7.40 (m, 2H), 7.11 – 7.06 (m, 1H), 7.02 (d, \(J = 8.6\) Hz, 2H), 6.69 (td, \(J = 119\) Hz, 3H). \(^{13}\)C NMR (150 MHz, Chloroform-d) \(\delta\) 166.1, 163.7, 135.4, 135.1, 131.4, 129.4, 127.5, 123.6, 123.2, 120.5, 113.7, 61.5, 60.0, 14.5, 14.1. HR-ESI-MS (m/z): calcd. for C\(_{20}\)H\(_{18}\)ClNO\(_4\) [M+H]\(^+\) 372.0997, found 372.1000.
6.9, 1.4 Hz, 1H), 4.36 (q, J = 7.1 Hz, 2H), 4.26 (q, J = 7.2 Hz, 2H), 3.86 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H), 1.23 (t, J = 7.1 Hz, 3H). 13C NMR (150 MHz, Chloroform-d) δ 166.5, 163.9, 160.1, 135.1, 131.5, 124.8, 123.5, 123.3, 122.1, 121.0, 120.3, 114.5, 113.3, 101.8, 61.3, 59.9, 55.4, 14.5, 14.1. HR-ESI-MS (m/z): calcd. for C$_{21}$H$_{21}$NO$_5$ [M+H]$^+$ 368.1492, found 368.1498.

Ethyl 2-formyl-3-phenylindolizine-1-carboxylate (5h)

![Ethyl 2-formyl-3-phenylindolizine-1-carboxylate (5h)](image)

(Eluent: ethyl acetate/petroleum ether = 1/10, v/v); 52% yield (yellow solid, mp 77–79 °C, 30.4 mg); 1H NMR (600 MHz, Chloroform-d) δ 10.77 (s, 1H), 8.32 (d, J = 9.2 Hz, 1H), 7.86 (d, J = 7.2 Hz, 1H), 7.55 – 7.50 (m, 3H), 7.44 (dd, J = 8.1, 1.6 Hz, 2H), 7.13 (dd, J = 10.2, 6.6 Hz, 1H), 6.72 (t, J = 7.5 Hz, 1H), 4.46 (q, J = 7.1 Hz, 2H), 1.46 (t, J = 7.2 Hz, 3H). 13C NMR (150 MHz, Chloroform-d) δ 190.1, 164.6, 136.1, 130.9, 129.4, 129.1, 129.0, 128.7, 124.8, 123.9, 123.9, 121.1, 114.3, 103.8, 60.3, 14.6. HR-ESI-MS (m/z): calcd. for C$_{18}$H$_{15}$NO$_3$ [M+H]$^+$ 294.1125, found 294.1124.

Ethyl 3-(4-fluorophenyl)-2-formylindolizine-1-carboxylate (5i)

![Ethyl 3-(4-fluorophenyl)-2-formylindolizine-1-carboxylate (5i)](image)

(Eluent: ethyl acetate/petroleum ether = 1/10, v/v); 38% yield (yellow solid, mp 78–80 °C, 23.6 mg); 1H NMR (600 MHz, Chloroform-d) δ 10.77 (s, 1H), 8.32 (d, J = 9.2 Hz, 1H), 7.82 (d, J = 7.2 Hz, 1H), 7.43 (dd, J = 8.7, 5.3 Hz, 2H), 7.22 (t, J = 8.6 Hz, 2H), 7.13 (dd, J = 8.8, 6.1 Hz, 1H), 6.74 (t, J = 6.3 Hz, 1H), 4.46 (q, J = 7.1 Hz, 2H), 1.45 (t, J = 7.1 Hz, 3H). 13C NMR (150 MHz, Chloroform-d) δ 190.2, 164.5, 162.4, 136.1, 133.0, 132.9, 127.3, 125.1, 124.9, 124.0, 123.6, 121.2, 116.3, 116.1,
Ethyl 3-(4-chlorophenyl)-2-formylindolizine-1-carboxylate (5j)

(Eluent: ethyl acetate/petroleum ether = 1/10, v/v); 38% yield (yellow solid, mp 84–86 °C, 25 mg); \(^1H \) NMR (600 MHz, Chloroform-d) \(\delta \) 10.77 (s, 1H), 8.33 (d, \(J = 9.2 \) Hz, 1H), 7.83 (d, \(J = 7.1 \) Hz, 1H), 7.51 (d, \(J = 8.3 \) Hz, 2H), 7.39 (d, \(J = 8.3 \) Hz, 2H), 7.16 – 7.12 (m, 1H), 6.74 (td, \(J = 6.9, 1.3 \) Hz, 1H), 4.46 (q, \(J = 7.2 \) Hz, 2H), 1.45 (t, \(J = 7.1 \) Hz, 3H). \(^{13}C \) NMR (150 MHz, Chloroform-d) \(\delta \) 190.2, 164.5, 136.2, 135.55, 132.3, 129.3, 127.6, 127.0, 124.9, 124.0, 123.6, 121.2, 114.6, 104.1, 60.4, 14.6. HR-ESI-MS (m/z): calcd. for \(C_{18}H_{14}FNO_3 \) [M+H]\(^+\) 312.0735, found 312.0734.

Ethyl 2-formyl-3-(4-methoxyphenyl)indolizine-1-carboxylate (5k)

(Eluent: ethyl acetate/petroleum ether = 1/10, v/v); 36% yield (yellow solid, mp 83–85 °C, 23 mg); \(^1H \) NMR (600 MHz, Chloroform-d) \(\delta \) 10.76 (s, 1H), 8.30 (d, \(J = 9.2 \) Hz, 1H), 7.87 (d, \(J = 7.1 \) Hz, 1H), 7.38 – 7.36 (m, 2H), 7.11 (ddd, \(J = 9.2, 6.5, 1.1 \) Hz, 1H), 7.06 – 7.03 (m, 2H), 6.71 (td, \(J = 6.9, 1.3 \) Hz, 1H), 4.45 (q, \(J = 7.1 \) Hz, 2H), 3.88 (s, 3H), 1.45 (t, \(J = 7.1 \) Hz, 3H). \(^{13}C \) NMR (150 MHz, Chloroform-d) \(\delta \) 190.3, 164.6, 160.3, 136.0, 132.3, 128.7, 124.6, 123.9, 123.9, 121.0, 121.0, 114.4, 114.2, 103.6, 60.3, 55.4, 14.6. HR-ESI-MS (m/z): calcd. for \(C_{19}H_{17}NO_4 \) [M+H]\(^+\) 324.1230, found 324.1229.
Ethyl 2-formyl-3-(thiophen-2-yl)indolizine-1-carboxylate (5l)

(Eluent: ethyl acetate/petroleum ether = 1/10, v/v); 25% yield (brown solid, mp 72–74 °C, 15.1 mg); ¹H NMR (600 MHz, Chloroform-d) δ 10.76 (s, 1H), 8.32 (d, J = 8.4 Hz, 1H), 8.02 (d, J = 7.1 Hz, 1H), 7.59 (d, J = 6.2 Hz, 1H), 7.27 (dd, J = 3.5, 1.1 Hz, 1H), 7.22 (dd, J = 5.1, 3.6 Hz, 1H), 7.16 (dd, J = 9.2, 6.6 Hz, 1H), 6.79 (t, J = 6.9 Hz, 1H), 4.45 (q, J = 7.1 Hz, 2H), 1.45 (t, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-d) δ 189.9, 164.4, 136.5, 131.0, 128.9, 128.8, 127.6, 126.6, 124.4, 124.3, 120.9, 114.6, 104.1, 60.4, 14.6. HR-ESI-MS (m/z): calcd. for C₁₆H₁₃NO₃S [M+H]+ 300.0689, found 300.0688.

General procedure for synthesis of 3-acylated indolizines derivatives : 6a-6g

Under N₂ atmosphere, 2-pyridylacetates (1a, 0.2 mmol, 33.0 mg), phenylpropynyl aldehyde (4, 0.4 mmol, 52.0 mg), I₂ (0.7 mmol, 177.7 mg), dppe (0.04 mmol, 15.9 mg), CuI (0.4 mmol, 77.8 mg), Na₂CO₃ (0.4 mmol, 42.4 mg), were mixed in 2 mL DMF. The reaction tube was heated in an oil bath at 160 °C for 4 hours. After completion of the reaction, the reaction mixture was washed with saturated sodium thiosulfate solution and extracted with EtOAc (40 mL × 3), dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. The remaining crude product was then purified through column chromatography using silica gel (EtOAc/petroleum ether = 1/10) to afford 6a as a yellow solid in 76% yield.

Ethyl 3-benzoylindolizine-1-carboxylate (6a,CAS:40624-43-9)¹⁰

(Eluent: ethyl acetate/petroleum ether = 1/10, v/v); 76% yield (yellow solid, mp 72–74 °C, 15.1 mg); ¹H NMR (600 MHz, Chloroform-d) δ 10.76 (s, 1H), 8.32 (d, J = 8.4 Hz, 1H), 8.02 (d, J = 7.1 Hz, 1H), 7.59 (d, J = 6.2 Hz, 1H), 7.27 (dd, J = 3.5, 1.1 Hz, 1H), 7.22 (dd, J = 5.1, 3.6 Hz, 1H), 7.16 (dd, J = 9.2, 6.6 Hz, 1H), 6.79 (t, J = 6.9 Hz, 1H), 4.45 (q, J = 7.1 Hz, 2H), 1.45 (t, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, Chloroform-d) δ 189.9, 164.4, 136.5, 131.0, 128.9, 128.8, 127.6, 126.6, 124.4, 124.3, 120.9, 114.6, 104.1, 60.4, 14.6. HR-ESI-MS (m/z): calcd. for C₁₆H₁₃NO₃S [M+H]+ 300.0689, found 300.0688.
148–150 °C, 44.3 mg); 1H NMR (600 MHz, Chloroform-d) δ 9.97 (d, J = 7.0 Hz, 1H), 8.39 (d, J = 8.9 Hz, 1H), 7.83–7.80 (m, 3H), 7.58 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 7.5 Hz, 2H), 7.46–7.43 (m, 1H), 7.09 (t, J = 7.5 Hz, 1H), 4.37 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H). 13C NMR (150 MHz, Chloroform-d) δ 185.6, 164.1, 139.9, 131.5, 129.2, 129.1, 129.0, 128.4, 127.7, 122.5, 119.5, 115.3, 106.3, 60.1, 14.6. HR-ESI-MS (m/z): calcd. for C$_{18}$H$_{16}$NO$_3$ [M+H]$^+$ 294.1125, found 294.1131.

Ethyl 3-(4-fluorobenzoyl)indolizine-1-carboxylate (6b,CAS:1003050-05-2)11

![Chemical structure of ethyl 3-(4-fluorobenzoyl)indolizine-1-carboxylate](image)

(Eluent: ethyl acetate/petroleum ether = 1/10, v/v); 60% yield (pale yellow solid, mp 102–104 °C, 37.3 mg); 1H NMR (600 MHz, Chloroform-d) δ 9.91 (d, J = 7.0 Hz, 1H), 8.38 (d, J = 8.9 Hz, 1H), 7.84 (dd, J = 8.7, 5.4 Hz, 2H), 7.78 (s, 1H), 7.46–7.43 (m, 1H), 7.19 (t, J = 8.6 Hz, 2H), 7.08 (t, J = 6.3 Hz, 1H), 4.37 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 7.1 Hz, 3H). 13C NMR (150 MHz, Chloroform-d) δ 184.1, 165.6, 164.0, 139.9, 136.1, 131.4, 131.3, 129.2, 128.8, 127.8, 122.3, 119.6, 115.6, 115.5, 115.4, 106.4, 60.2, 14.6. HR-ESI-MS (m/z): calcd. for C$_{18}$H$_{14}$FNO$_3$ [M+H]$^+$ 312.1030, found 312.1029.

Ethyl 3-(4-chlorobenzoyl)indolizine-1-carboxylate (6c,CAS:1003050-06-3)11

![Chemical structure of ethyl 3-(4-chlorobenzoyl)indolizine-1-carboxylate](image)

(Eluent: ethyl acetate/petroleum ether = 1/10, v/v); 71% yield (yellow solid, mp 81–83 °C, 46.4 mg); 1H NMR (600 MHz, Chloroform-d) δ 9.92 (d, J = 7.0 Hz, 1H), 8.39 (d, J = 8.9 Hz, 1H), 7.77 (d, J = 3.0 Hz, 2H), 7.75 (s, 1H), 7.50–7.44 (m, 3H), 7.09 (t, J = 6.9 Hz, 1H), 4.37 (q, J = 7.2 Hz, 2H), 1.40 (t, J = 7.1 Hz, 3H). 13C NMR (150 MHz, Chloroform-d) δ 184.1, 164.0, 140.0, 138.2, 137.8, 130.4, 129.2, 128.8,
Ethyl 3-((4-methoxybenzoyl)indolizine-1-carboxylate (6d, CAS: 1003050-04-1)11

![Chemical Structure]

(Eluent: ethyl acetate/petroleum ether = 1/20, v/v); 60% yield (yellow solid, mp 88–90 °C, 35 mg); 1H NMR (600 MHz, Chloroform-d) \textdagger δ 9.89 (d, J = 7.0 Hz, 1H), 8.36 (s, 1H), 7.84 (s, 1H), 7.82 (d, J = 5.8 Hz, 2H), 7.43 – 7.38 (m, 1H), 7.05 (t, J = 6.5 Hz, 1H), 7.01 (d, J = 8.8 Hz, 2H), 4.37 (q, J = 7.1 Hz, 2H), 3.89 (s, 3H), 1.40 (t, J = 7.1 Hz, 3H). 13C NMR (150 MHz, Chloroform-d) \textdagger δ 184.6, 164.2, 162.5, 139.7, 132.4, 131.2, 129.1, 128.4, 127.4, 122.6, 119.5, 115.1, 113.7, 105.9, 60.1, 55.5, 14.6. HR-ESI-MS (m/z): calcd. for C\textsubscript{19}H\textsubscript{17}NO\textsubscript{4} [M+H]+ 324.1230, found 324.1229.

Ethyl 3-((thiophene-2-carbonyl)indolizine-1-carboxylate (6e, CAS: 1003050-07-4)10

![Chemical Structure]

(Eluent: ethyl acetate/petroleum ether = 1/10, v/v); 57% yield (yellow solid, mp 81–83 °C, 34 mg); 1H NMR (600 MHz, Chloroform-d) \textdagger δ 9.83 (d, J = 7.1 Hz, 1H), 8.37 (d, J = 8.9 Hz, 1H), 8.13 (d, J = 1.6 Hz, 1H), 7.81 (d, J = 4.7 Hz, 1H), 7.66 (d, J = 5.0 Hz, 1H), 7.44 – 7.39 (m, 1H), 7.21 – 7.18 (m, 1H), 7.05 (t, J = 6.9 Hz, 1H), 4.40 (q, J = 6.9 Hz, 2H), 1.42 (t, J = 7.1 Hz, 3H). 13C NMR (150 MHz, Chloroform-d) \textdagger δ 176.4, 164.1, 144.3, 139.9, 132.1, 132.1, 129.1, 127.8, 127.6, 127.3, 122.2, 119.6, 115.2, 106.4, 60.2, 14.6. HR-ESI-MS (m/z): calcd. for C\textsubscript{16}H\textsubscript{13}NO\textsubscript{3}S [M+H]+ 300.0689, found 300.0688.

Ethyl 3-pentanoylindolizine-1-carboxylate (6f)
(Eluent: ethyl acetate/petroleum ether = 1/10, v/v); 59% yield (yellow solid, mp 42–44 °C, 32 mg); \(^1\)H NMR (600 MHz, Chloroform-d) \(\delta\) 9.93 (d, J = 7.1 Hz, 1H), 8.33 (d, J = 8.9 Hz, 1H), 8.01 (s, 1H), 7.38 (ddd, J = 8.8, 6.8, 1.0 Hz, 1H), 7.01 (td, J = 7.0, 1.4 Hz, 1H), 4.40 (q, J = 7.1 Hz, 2H), 2.93 – 2.89 (m, 2H), 1.76 (p, J = 7.7 Hz, 2H), 1.43 (td, J = 7.4, 3.4 Hz, 5H), 0.96 (t, J = 7.4 Hz, 3H). \(^{13}\)C NMR (150 MHz, Chloroform-d) \(\delta\) 191.1, 164.2, 139.3, 129.2, 127.1, 125.6, 122.7, 119.4, 115.1, 105.6, 60.1, 39.2, 27.7, 22.6, 14.6, 14.0. HR-ESI-MS (m/z): calcd. for C\(_{16}\)H\(_{19}\)NO\(_3\) [M+H]\(^+\) 274.1438, found 274.1437.

Ethyl 3-benzoyl-6-methylindolizine-1-carboxylate (6g)

(Eluent: ethyl acetate/petroleum ether = 1/10, v/v); 54% yield (brown solid, mp 123–125 °C, 33.1 mg); \(^1\)H NMR (600 MHz, Chloroform-d) \(\delta\) 9.80 (s, 1H), 8.27 (d, J = 9.0 Hz, 1H), 7.82 – 7.78 (m, 2H), 7.75 (s, 1H), 7.59 – 7.54 (m, 1H), 7.50 (t, J = 7.4 Hz, 2H), 7.30 (d, J = 9.1 Hz, 1H), 4.36 (q, J = 7.1 Hz, 2H), 2.43 (d, J = 1.2 Hz, 3H), 1.38 (t, J = 7.1 Hz, 3H). \(^{13}\)C NMR (150 MHz, Chloroform-d) \(\delta\) 185.4, 164.1, 140.0, 138.6, 131.3, 130.6, 128.9, 128.8, 128.3, 127.3, 125.3, 122.2, 118.7, 106.0, 60.0, 18.5, 14.5. HR-ESI-MS (m/z): calcd. for C\(_{19}\)H\(_{17}\)NO\(_3\) [M+H]\(^+\) 308.3490, found 308.3493.

General procedure for synthesis of product 7a-7b :

Under N\(_2\) atmosphere, 2-pyridylacetates (1a, 0.8 mmol, 132.2 mg), 1,4-diphenyl butadiyne (6, 0.2 mmol, 40.4 mg), I\(_2\) (0.4 mmol, 101.5 mg), dppe (0.04 mmol, 15.9 mg), Na\(_2\)CO\(_3\) (0.4 mmol, 42.4 mg), were mixed in 2 mL DMF. The reaction tube was heated in an oil bath at 160 °C for 4 hours. After completion of the reaction, the
reaction mixture was washed with saturated sodium thiosulfate solution and extracted with EtOAc (40 mL × 3), dried over anhydrous Na$_2$SO$_4$ and the solvent was removed under reduced pressure. The remaining crude product was then purified through column chromatography using silica gel (EtOAc/petroleum ether = 1/20) to afford 7a as a yellow solid in 38% yield.

Ethyl 3-phenyl-2-(phenylethynyl)indolizine-1-carboxylate (7a)

![Chemical Structure]

(Eluent: ethyl acetate/petroleum ether = 1/20, v/v); 38% yield (yellow solid, mp 111–113 °C, 28 mg); 1H NMR (600 MHz, Chloroform-d) δ 8.43 (dt, J = 6.8, 1.2 Hz, 1H), 8.33 (dt, J = 9.1, 1.2 Hz, 1H), 7.65 (dt, J = 6.4, 1.4 Hz, 2H), 7.47 – 7.41 (m, 4H), 7.41 – 7.37 (m, 1H), 7.35 – 7.30 (m, 3H), 7.21 (ddd, J = 9.0, 6.7, 1.2 Hz, 1H), 6.91 (td, J = 6.8, 1.3 Hz, 1H), 4.26 (q, J = 7.1 Hz, 2H), 1.22 (t, J = 7.1 Hz, 3H). 13C NMR (150 MHz, Chloroform-d) δ 164.5, 137.0, 136.3, 133.9, 131.0, 130.7, 128.4, 128.3, 127.5, 127.4, 125.2, 124.2, 122.9, 120.2, 113.4, 108.3, 102.4, 98.5, 79.3, 59.6, 14.2. HR-ESI-MS (m/z): calcd. for C$_{25}$H$_{19}$NO$_2$ [M+H]$^+$ 366.1489, found 366.1497.

Ethyl 3-buty1-2-(hex-1-yn-1-yl)indolizine-1-carboxylate (7b)

![Chemical Structure]

(Eluent: ethyl acetate/petroleum ether = 1/20, v/v); 35% yield (brown oil, 22.7 mg); 1H NMR (600 MHz, Chloroform-d) δ 8.21 (d, J = 5.9 Hz, 1H), 8.18 (d, J = 8.0 Hz, 1H), 7.08 (s, 1H), 6.77 (d, J = 14.7 Hz, 1H), 4.37 (q, J = 7.1 Hz, 2H), 3.03 – 2.99 (m, 2H), 2.59 (t, J = 7.0 Hz, 2H), 1.69 – 1.62 (m, 4H), 1.58 (s, 2H), 1.41 (t, J = 7.1 Hz, 5H), 0.98 (t, J = 7.3 Hz, 3H), 0.95 (t, J = 7.4 Hz, 3H). 13C NMR (150 MHz, Chloroform-d) δ 165.1, 137.3, 136.3, 124.7, 123.0, 119.6, 112.5, 108.8, 101.6, 69.9, 59.3, 33.0, 31.0, 26.4, 22.8, 19.6, 14.6, 14.0, 13.6. HR-ESI-MS (m/z): calcd. for
General procedure for synthesis of product 8a-8b:
Under N₂ atmosphere, 2-pyridylacetates (1a, 0.4 mmol, 66.0 mg), ethyl 3-phenyl-2-(phenylethynyl)indolizine-1-carboxylate (7a, 0.1 mmol, 36.5 mg), I₂ (0.4 mmol, 101.5 mg), dppe (0.04 mmol, 15.9 mg), Na₂CO₃ (0.4 mmol, 42.4 mg), were mixed in 2 mL DMF. The reaction tube was heated in an oil bath at 160 °C for 4 hours. After completion of the reaction, the reaction mixture was washed with saturated sodium thiosulfate solution and extracted with EtOAc (40 mL × 3), dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. The remaining crude product was then purified through column chromatography using silica gel (EtOAc/petroleum ether = 1/20) to afford 8a as a yellow solid in 66% yield.

Diethyl 3,3'-diphenyl-[2,2'-biindolizine]-1,1'-dicarboxylate (8a)

(Eluent: ethyl acetate/petroleum ether = 1/20, v/v); 66% yield (yellow solid, mp 134–136 °C, 34.7 mg); ¹H NMR (600 MHz, Chloroform-d) δ 8.35 – 8.30 (m, 2H), 7.42 (d, J = 6.9 Hz, 2H), 7.16 – 7.13 (m, 4H), 7.10 (dd, J = 8.2, 6.5 Hz, 4H), 6.93 (dt, J = 7.0, 1.4 Hz, 4H), 6.65 (td, J = 6.8, 1.3 Hz, 2H), 4.20 (qt, J = 7.1, 3.7 Hz, 4H), 1.14 (t, J = 7.1 Hz, 6H). ¹³C NMR (150 MHz, Chloroform-d) δ 164.9, 137.2, 135.2, 134.0, 129.6, 127.2, 127.0, 123.5, 123.4, 120.3, 113.2, 112.9, 102.6, 59.5, 14.1. HR-ESI-MS (m/z): calcd. for C₃₄H₃₈N₂O₄ [M+H]⁺ 529.2122, found 529.2121.

Ethyl 3,3'-dibutyl-1'-ethyl-[2,2'-biindolizine]-1-carboxylate (8b)
(Eluent: ethyl acetate/petroleum ether = 1/20, v/v); 28% yield (yellow oil, 27.2 mg);

1H NMR (400 MHz, Chloroform-d) δ 8.30 (d, $J = 9.0$ Hz, 2H), 7.24 (s, 2H), 7.12 – 7.06 (m, 2H), 6.62 – 6.56 (m, 2H), 4.40 (q, $J = 7.1$ Hz, 4H), 2.73 – 2.63 (m, 4H), 1.43 (t, $J = 7.1$ Hz, 10H), 1.22 – 1.11 (m, 4H), 0.70 (t, $J = 7.3$ Hz, 6H). 13C NMR (100 MHz, Chloroform-d) δ 165.3, 137.6, 136.4, 123.3, 123.1, 119.9, 112.6, 112.3, 102.3, 59.4, 33.2, 26.3, 22.9, 14.6, 13.8. HR-ESI-MS (m/z): calcd. for C$_{30}$H$_{36}$N$_{2}$O$_{4}$ [M+H]$^+$ 489.2676, found 489.2680.

General procedure for synthesis of product 9:

Under N$_2$ atmosphere, 2-pyridylacetates (1a, 0.2 mmol, 33.0 mg), phenylacetylene (2a, 0.4 mmol, 40.9 mg), 2,2,6,6-ter-amethylpiperidine N-oxide (TEMPO) (0.4 mmol, 63.8 mg), I$_2$ (0.4 mmol, 101.5 mg), dppe (0.04 mmol, 15.9 mg), Na$_2$CO$_3$ (0.4 mmol, 42.4 mg), were mixed in 2 mL DMF. The reaction tube was heated in an oil bath at 160 °C for 4 hours. After completion of the reaction, the reaction mixture was washed with saturated sodium thiosulfate solution and extracted with EtOAc (40 mL × 3), dried over anhydrous Na$_2$SO$_4$ and the solvent was removed under reduced pressure. The remaining crude product was then purified through column chromatography using silica gel (EtOAc/petroleum ether = 1/5) to afford product 9 as a brown oil in 49% yield.

Ethyl 2-(pyridin-2-yl)-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)acetate (9).
(Eluent: ethyl acetate/petroleum ether = 1/5, v/v); 49% yield (brown oil, 31.4 mg); 1H NMR (600 MHz, Chloroform-d) δ 8.56 (d, J = 4.4 Hz, 1H), 7.73 (td, J = 7.7, 1.7 Hz, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.23 – 7.20 (m, 1H), 5.42 (s, 1H), 4.23 – 4.13 (m, 2H), 1.50 (d, J = 6.8 Hz, 2H), 1.42 (s, 2H), 1.32 (d, J = 11.7 Hz, 1H), 1.28 – 1.21 (m, 7H), 1.19 (s, 3H), 1.13 (s, 3H), 0.71 (s, 3H). 13C NMR (150 MHz, Chloroform-d) δ 171.2, 158.1, 149.1, 136.8, 122.9, 121.8, 89.7, 61.0, 60.1, 40.2, 33.3, 32.9, 20.3, 17.1, 14.2. HR-ESI-MS (m/z): calcd. For C$_{18}$H$_{28}$N$_2$O$_3$K [M+K]$^+$ 359.1732, found 359.1731.
5c

![Diagram of a chemical structure with labels COO\text{Pr} and COOEt]
S106
COOEt, C₄H₉, C₄H₉COOEt

8b
\begin{align*}
\text{COOEt} & \quad C_4H_9 \\
C_4H_9C\text{OOC}=\text{Et} & \quad C_4H_9
\end{align*}

8b
ORTEP diagram of product 4p:
ORTEP diagram of product 5a:
References: