Supporting Information
for DOI: 10.1055/s-0037-1610278
© Georg Thieme Verlag KG Stuttgart · New York 2018
Supporting information

Practical deoxygenation of oxazole N-oxides by PCl₃/collidine

Valerii Z. Shirinian,* Ilya A. Lonshakov, Alexey V. Zakharov, Andrey G. Lvov, Mikhail M. Krayushkin

¹N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prosp., 119991 Moscow, Russian Federation, e-mail: shir@ioc.ac.ru
²Mendeleev University of Chemical Technology of Russia, Miusskaya Sq., 9, Moscow, 125047, Russian Federation

Table of Contents

I. General information S2
II. Copies of ¹H and ¹³C NMR spectra S3
III. Copies of ¹H and ¹³C NMR spectra of by-products..S16
IV. NMR and IR spectra of complex PCl₃-collidine...S19
I. General information

Proton nuclear magnetic resonance spectra (1H NMR) and carbon nuclear magnetic resonance spectra (13C NMR) were recorded in deuterated solvents on a spectrometers working at 300 MHz for 1H, 75 MHz for 13C. Both 1H and 13C NMR reported in parts per million (ppm) at 293 K. Data are represented as follows: chemical shift, multiplicity (s, singlet; d, doublet; m, multiplet; br, broad; q, quartet), coupling constant in hertz (Hz). Melting points (m.p.) were recorded using an apparatus and not corrected. Mass spectra were obtained on a mass spectrometer (70 eV) with direct sample injection into the ion source. High resolution mass spectra were obtained from a TOF mass spectrometer with an ESI source. All chemicals and anhydrous solvents were purchased from commercial sources and used without further purification. Silica column chromatography was performed using silica gel 60 (70–230 mesh); TLC analysis was conducted on silica gel 60 F254 plates.
II. Copies of 1H and 13C NMR spectra

1H NMR spectra of compound 2b

13C NMR spectra of compound 2b
1H NMR spectra of compound 2c

13C NMR spectra of compound 2c

* Peak of "grease" (29.7)
1H NMR spectra of compound 2d

13C NMR spectra of compound 2d
1H NMR spectra of compound 2e

13C NMR spectra of compound 2e
1H NMR spectra of compound 2f

13C NMR spectra of compound 2f
1H NMR spectra of compound 2g

13C NMR spectra of compound 2g

* Peak of "grease" (29.7 ppm)
1H NMR spectra of compound 2h

13C NMR spectra of compound 2h

* Peak of "grease" (29.7 ppm)
1H NMR spectra of compound 2k

13C NMR spectra of compound 2k

* Peak of “grease” (29.7 ppm)
1H NMR spectra of compound 21

13C NMR spectra of compound 21
1H NMR spectra of compound 2n

13C NMR spectra of compound 2n
1H NMR spectra of compound 2o

13C NMR spectra of compound 2o
1H NMR spectra of compound 2p

13C NMR spectra of compound 2p
\(^1\)H NMR spectra of compound 5c

\(^{13}\)C NMR spectra of compound 5c
III. Copies of 1H and 13C NMR spectra of by-products

1H NMR spectra of compound 3a

13C NMR spectra of compound 3a
1H NMR spectra of compound 3b

13C NMR spectra of compound 3b
1H NMR spectra of mixture of 2c and 3c
IV. NMR and IR spectra of complex PCl$_3$-collidine.

31P NMR spectrum of complex PCl$_3$-collidine

IR spectrum of complex PCl$_3$-collidine