Supporting Information

Synthesis of Trifluoromethyl Ketone Containing Amino Acid Building Blocks for the Preparation of Peptide-Based Histone Deacetylase (HDAC) Inhibitors

Carlos Moreno-Yruela and Christian A. Olsen*

Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark.

*cao@sund.ku.dk

Table of Contents

Figure S1 Analysis of the enantiomeric purity of amino acid 9a using Marfey’s method 1

Figure S2 Optimization of deprotection conditions for the 1,3-dioxane protecting group of peptide 13a 2

Figure S3 Dose-response curves for the inhibitory potency of peptide 13 and TSA against class IIa HDACs and HDAC8 3

Figures S4–S37 NMR spectra 4
Figure S1 Analysis of the enantiomeric purity of compounds 8 and 9a by functionalization with Marfey’s Reagent and chromatographic separation. HPLC traces were recorded at 340 nm.
Figure S2 Optimization of CF$_3$SO$_3$H concentration for the removal of the dioxane protecting group of Atona from peptide 13a (pre-purified). HPLC traces were recorded at 280 nm.
Figure S3 Dose-response curves for the inhibitory potency of peptide 13 and trichostatin A (TSA) against class IIa HDACs and HDAC8. Values at each concentration are based on two individual experiments performed in duplicate and represent mean ± SD.
Figure S4 1H NMR of compound 4, recorded in CDCl$_3$.

Figure S5 13C NMR of compound 4, recorded in CDCl$_3$.
Figure S6 1H NMR of tert-butyl 6-iodohexanoate, recorded in CDCl$_3$.

Figure S7 13C NMR of tert-butyl 6-iodohexanoate, recorded in CDCl$_3$.
Figure S8 1H NMR of compound 5, recorded in CDCl$_3$.

Figure S9 13C NMR of compound 5, recorded in CDCl$_3$.
Figure S10 1H NMR of compound 6, recorded in CDCl$_3$.

Figure S11 13C NMR of compound 6, recorded in CDCl$_3$.
Figure S12 1H NMR of 7-acetamido-8-ethoxy-8-oxooctanoic acid, recorded in DMSO-\textit{d}_6.

Figure S13 13C NMR of 7-acetamido-8-ethoxy-8-oxooctanoic acid, recorded in DMSO-\textit{d}_6.
Figure S1 1H NMR of compound 7, recorded in CDCl3.

Figure S15 13C NMR of compound 7, recorded in CDCl3.
Figure S16 19F NMR of compound 7, recorded in CDCl$_3$.

Figure S17 1H NMR of compound 8, recorded in CDCl$_3$.
Figure S18 13C NMR of compound 8, recorded in CDCl$_3$.

Figure S19 19F NMR of compound 6, recorded in CDCl$_3$.
Figure S20 1H NMR of compound 9a, recorded in CDCl$_3$.

Figure S21 13C NMR of compound 9a, recorded in CDCl$_3$.
Figure S22 19F NMR of compound 9a, recorded in CDCl$_3$.

Figure S23 1H NMR of compound 9b, recorded in CDCl$_3$.
Figure S24 13C NMR of compound 9b, recorded in CDCl$_3$.

Figure S25 19F NMR of compound 9b, recorded in CDCl$_3$.
Figure S26 1H NMR of compound 10a, recorded in CDCl$_3$.

Figure S27 13C NMR of compound 10a, recorded in CDCl$_3$.
Figure S2 19F NMR of compound 10a, recorded in CDCl$_3$.

Figure S2 1H NMR of compound 10b, recorded in CDCl$_3$.

16
Figure S30 13C NMR of compound 10b, recorded in CDCl$_3$.

Figure S31 19F NMR of compound 10b, recorded in CDCl$_3$.
Figure S32 \(^1 \)H NMR of compound 11, recorded in CDCl₃.

Figure S33 \(^{13} \)C NMR of compound 11, recorded in CDCl₃.
Figure S3 19F NMR of compound 11, recorded in CDCl$_3$.

Figure S3 13C NMR of compound 12, recorded in CDCl$_3$.
Figure S36 13C NMR of compound 12, recorded in CDCl$_3$.

Figure S37 19F NMR of compound 12, recorded in CDCl$_3$.