Effect of γ-substituted Proline Derivatives on the Performance of the Peptidic Catalyst H-dPro-Pro-Glu-NH₂

Tobias Schnitzer and Helma Wennemers*

ETH Zürich, Laboratory of Organic Chemistry
Department of Chemistry and Applied Biosciences
Vladimir-Prelog-Weg 3, CH-8093 Zürich (Switzerland)
E-mail: Helma.Wennemers@org.chem.ethz.ch

Supporting Information

Content

1 General Aspects and Materials..2
2 ¹H and ¹³C NMR Spectra of Peptides 2R–5R and 2S–5S3
1. **General Aspects and Materials**

Reagents and materials were of the highest commercially available grade and used without further purification. Reactions were monitored by thin layer chromatography using Merck silica gel 60 F254 aluminium sheets. Visualization of the compounds was achieved by UV or KMnO₄. Flash chromatography and plug filtrations were performed using Fluka silica gel 60 (particle size 0.040 – 0.063 mm, 200 – 400 mesh). Solvents for chromatography were of technical quality and distilled before use. ¹H and ¹³C NMR spectra were recorded on a Bruker DRX 400, a Bruker AV III 400 (400 MHz/100 MHz) or a Bruker AV III 600 (600 MHz/150 MHz). All spectra were recorded at 25 °C, unless stated otherwise. Chemical shifts (δ) are reported in parts per million (ppm) relative to the signal of tetramethylsilane (TMS). SFC analyses were performed on an analytical SFC with a diode array detector ACQUITY-UPLC-PDA from Waters using the chiral AD column (150 mm x 30 mm) from Daicel under the reported conditions. A Bruker maXis (UHR-TOF) was used for high-resolution electrospray ionisation (HR-ESI) mass spectrometry.
2 1H and 13C NMR Spectra of Peptides 2R–5R and 2S–5S