Supporting Information
for DOI: 10.1055/s-0037-1610196
© Georg Thieme Verlag KG Stuttgart · New York 2018
Pavel Ryabchuk, Kathrin Junge, Matthias Beller*

Leibniz-Institut für Katalyse e.V., Albert Einstein Str. 29a, 18059 Rostock, Germany
matthias.beller@catalysis.de

SUPPORTING INFORMATION

TABLE OF CONTENTS
1. Preparation of Catalysts. ... 2
2. General procedure for hydrogenations ... 3
3. GC analysis of the gas phase ... 3
4. Deuterium labeling experiments NMR spectra .. 5
5. Hot filtration tests .. 6
6. Photographs of the iron catalyst after recycling .. 6
7. NMR spectral charts .. 7
1. Preparation of Catalysts.

Vulcan XC72R-supported metal-based and intermetallic nickel-silicide materials were prepared by the impregnation method as previously reported:

Fe$_2$O$_3$/NGr@C, CoCo$_3$O$_4$/NGr@C, NiNiO/NGr@C, NiSi/NiO-SiO$_2$@SiO$_2$.

Preparation of the Fe$_2$O$_3$/NGr@C*-catalyst.

Vulcan XC72R-supported iron-based materials were prepared by the impregnation method as previously reported. A 250 mL oven-dried single-necked round-bottomed flask equipped with a Allihn reflux condenser and a Teflon-coated, egg-shaped magnetic stir bar (40 × 18 mm) was charged with Fe(OAc)$_2$ (260 mg, 1.5 mmol, 1.0 equiv.), 1,10-phenanthroline monohydrate (564 mg, 3.0 mmol, 2.0 equiv.) and dissolved in ethanol (60 mL). After stirring for 5 min at 25°C, the flask was immersed in an oil bath and heated at 60°C for 2 h. To the reaction mixture 2.10 g of carbon (Vulcan XC72R) was added via a glass funnel and the resulting heterogeneous mixture was stirred at 750 rpm for 2 h at 60°C. The flask was taken out from the bath and cooled to ambient temperature. The solvent was removed in vacuo (180 mbar, bath temperature 40°C, 200 rpm), then dried under oil pump vacuum (1.0 mmHg, 23°C) overnight. The sample was ground to a fine powder which was then transferred to a ceramic crucible (height – 20 mm, top Ø – 40 mm) and placed in an oven. The latter was evacuated to ca. 5 mbar and then flushed with argon three times. The furnace was heated to 1000°C at a rate of 25°C per minute and held at 1000°C for 2 h under argon atmosphere. After the heating was switched off the oven was allowed to reach room temperature, giving the Fe$_2$O$_3$/NGr@C* as a black powder. (Note: during the whole process argon was constantly passed through the oven).

2. General procedure for hydrogenations.

Hydrogenation experiments on 0.5 mmol scale were carried out in 300 mL autoclave (PARR Instrument Company) in 8-mL glass vials, which were placed inside the autoclave:

An 8 mL glass vial (Ø – 14 mm, height 50 mm) equipped with a Teflon-coated oval magnetic stirring bar (8 × 5 mm) and a plastic screw cap was charged with corresponding nitroarene (0.5 mmol, 1.0 equiv.), 50 mg of Fe$_2$O$_3$/NGr@C catalyst (4.0 mol% Fe), triethylamine (70 µ, 0.5 mmol, 1.0 equiv) 2 mL THF and 0.2 mL of deionized water. The silicone septum was punctured with a 26 gauge syringe needle (0.45 × 12 mm) and the vial was placed in an aluminum plate which was then transferred into the 300 mL autoclave. Once sealed, the autoclave was placed into an aluminum block and purged 3 times with CO (at 5-10 bar). Then it was pressurized with CO to 30 bar, followed by additional 20 bar of N$_2$. The aluminum block was heated up to 125°C under thorough stirring (700 rpm). After 24 h, the autoclave was removed from the aluminum block and cooled to room temperature in a water bath. The remaining gases were discharged and the vials containing reaction products were removed from the autoclave. The reaction mixture was filtered through a Celite pad (~1 cm), concentrated and analyzed by GC and NMR.

Hydrogenation of 2s on 5.0 mmol scale:

A 25 mL autoclave (PARR Instrument Company) equipped with turbine type impeller was charged with 2s (1.30 g, 5.0 mmol, 1.0 equiv.), 500 mg of Fe$_2$O$_3$/NGr@C catalyst (4.0 mol% Fe), triethylamine (700 µ, 5.0 mmol, 1.0 equiv), 10 mL THF and 1.0 mL of deionized water. Once sealed, the autoclave was placed into an aluminum block and purged 3 times with CO (at 5-10 bar). Then it was pressurized with CO to 30 bar, followed by additional 20 bar of N$_2$. The aluminum block was heated up to 125°C under thorough stirring (400 rpm). After 24 h, the autoclave was removed from the aluminum block and cooled to room temperature in a water bath. The remaining gases were discharged and the vials containing reaction products were removed from the autoclave. The reaction mixture was filtered through a Celite pad (~3 cm), washed with ethyl acetate (3 x 20 mL) and methanol (2 x 20 mL). The solution was concentrated desired product 1s a yellow oil (975 mg, 85%).

3. GC analysis of the gas phase

GC Conversion and yields were determined by GC-FID, HP6890 with FID detector, column HP530 m x 250 mm x 0.25 µm. Analysis of the gas sample in the dehydrogenation process was performed using GC HP Plot Q (FID – hydrocarbons, Carboxen / TCD - permanent gases), Ar - carrier gas. The GC was externally calibrated using certified gas mixtures from commercial suppliers (Linde and Air Liquide) with the following gas vol%:

- H$_2$: 1%, 10%, 25%, 50%, 100%
- CO: 10 ppm, 100 ppm, 250 ppm, 1000 ppm, 1%, 10%
- CO$_2$: 1%, 50%
- CH$_4$: 1%

The systems allow for the determination of H$_2$, CH$_4$, CO and CO$_2$ within the ranges:

- H$_2$ ≥ 0.5 vol% - 100 vol%
CO ≥ 10 ppm
CO₂ ≥ 100 ppm - 100 vol%
CH₄ ≥ 1 ppm

Fig. S1. Gas composition analysis by GC of the gas mixture after 48h in the absence of nitroarene substrate (H₂:CO:CO₂ – 1.55: 98.36: 0.088).

Fig. S2. Gas composition analysis by GC of the gas mixture after 24h in the presence nitrobenzene. (H₂:CO:CO₂ – 1.31: 93.83: 4.83).
4. Deuterium labeling experiments NMR spectra

Fig. S3. Deuterium labeling experiments
5 Hot filtration tests

A set of reactions was set according to the general hydrogenation procedure described above. Hydrogenation of nitrobenzene was stopped at a certain time and the autoclave was cooled to room temperature and degassed. Vials containing reaction mixtures were heated to 50°C in an aluminum block under stirring. Then the reaction mixtures were quickly filtered through a preheated pipette, filled with celite (~1 cm). The filtrate was analyzed by GC (Yield A) and collected in a separate vial with a stirring bar. After the addition of 100µL of H₂O the vial was capped and transferred back into the autoclave for addition 16h under standard reaction conditions. The reaction mixture was again analyzed by GC (Yield, B).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Time, h</th>
<th>TEA, equiv.</th>
<th>Yield, A, %</th>
<th>Yield B, %</th>
<th>Fe (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>1.0</td>
<td>79</td>
<td>79</td>
<td>13.0</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>0</td>
<td>44</td>
<td>45</td>
<td>10.2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1.0</td>
<td>34</td>
<td>33</td>
<td>Not determined</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0</td>
<td>16</td>
<td>16</td>
<td>Not determined</td>
</tr>
</tbody>
</table>

Table S1. Summary of hot filtration tests

6. Photographs of the iron catalyst after recycling

![Fig. S4](image_url). Fresh Fe₃O₄/NGr@C catalyst (left); used Fe₃O₄/NGr@C catalyst (right).
7. NMR spectral charts
P. Ryabchuk, K Junge and M. Beller
Ryabchuk, K Junge and M. Beller

Ryabchuk RP2-89-1
Au1H CDCl3 (C:\Bruker\TopSpin3.5\ff) 1804 21

\[
\begin{align*}
\text{NC} & \quad \text{NH}_2 \\
2n & \\
\end{align*}
\]

Ryabchuk RP2-89-1
Au13C CDCl3 (C:\Bruker\TopSpin3.5\ff) 1804 21

\[
\begin{align*}
\text{NC} & \quad \text{NH}_2 \\
2n & \\
\end{align*}
\]